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SUMMARY
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complica-
tions that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of
beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated
beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized
by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between
obesity and T2D involves pathways regulated by the central nervous system governing food intake and en-
ergy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing dia-
betes or its complications represents interactions between genetic susceptibility and environmental factors,
including the availability of nutritious food and other social determinants of health. This perspective reviews
recent advances in understanding the pathophysiology and treatment of diabetes and its complications,
which could alter the course of this prevalent disorder.
INTRODUCTION

Diabetes mellitus has afflicted mankind for millennia.1 From the

time of the ‘‘early’’ descriptions of the malady to the present

time, there has been an explosion in our understanding of the

prevalence, pathophysiology, complications, and therapeutic

options for the growing number of individuals worldwide who

live with diabetes or are at increased risk for developing this dis-

order. Diabetes develops when there is insufficient insulin to

stimulate the physiological disposal of glucose to promote the

storage of energy in adipose tissue, muscle, and liver. The

phenotypic spectrum of diabetes spans disorders of near total

insulin deficiency, as occurs in type 1 diabetes (T1D), to relative

insulin deficiency in the context of insulin resistance (IR) that

characterizes type 2 diabetes (T2D). Although the diagnosis of

diabetes is based on measuring blood glucose or glycated he-

moglobin, the disorder should be considered a multisystem dis-

order that is associated with multiple comorbidities. Diabetes is

broadly categorized as T1D, which develops on the basis of im-

mune destruction of beta cells; T2D, which is associated with IR
All rights are reserved, including those
and relative beta cell insufficiency, diabetes syndromes specif-

ically attributable to monogenic disorders, drug toxicity, or to

pancreatic insufficiency; and diabetes of pregnancy (gestational

diabetes). By far the largest numbers of individuals are affected

by T2D, followed by T1D, which accounts for less than 5% of all

cases. In 2021, the global prevalence of diabetes mellitus was

estimated to be 6.1%, representing 529 million people, with

prevalence estimates in certain regions as high as 12.3%. T2D

accounts for 96% of cases, and greater than 50% of T2D is

attributable to obesity. The trajectory of the diabetes pandemic

is concerning, with an estimated 1.31 billion individuals pro-

jected to have diabetes by 2050, with prevalence exceeding

10% in two super-regions (16.8% in north Africa and the Middle

East and 11.3% in Latin America and the Caribbean).2 Other an-

alyses suggest that the 2021 global prevalence already exceeds

10%.3 Moreover, in 2021, an additional 464 million individuals

were estimated to have impaired glucose tolerance and 298

million with impaired fasting glucose tolerance, collectively rep-

resenting prediabetes.4 Diabetes increases all-cause mortality

largely from cardiovascular and renal disease and contributes
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to multiple other morbidities, including blindness, limb loss,

chronic pain, and disability.5 Prediabetes also ‘‘clusters’’ with

increased cardiovascular disease (CVD).6 As such, the diabetes

pandemic if left unchecked will continue to place significant bur-

dens on public health.

Although elevated circulating glucose is a characteristic dia-

betes of any cause, T2D is a heterogeneous disorder with differ-

ences in outcomes in distinct population subgroups. Given the

association between obesity and T2D, it has been argued that

much of this burden could be preventable with increased focus

on policy that would improve nutrition, increase physical activity,

and reduce obesity. However, the heterogeneity of diabetes in-

dicates that prevention and treatment strategies should ideally

be tailored to maximize their efficacy in specific populations.

Many fundamental questions remain regarding underlying

mechanisms that increase the risk of diabetes in obesogenic en-

vironments and identification of targets that will reverse the

metabolic abnormalities and reduce complications, particularly

cardiorenal disease in individuals with established diabetes. Dia-

betes is a multisystem disorder driven by complex interactions

between genetic predisposition and environmental variables

that lead tometabolic dysfunction characterized by beta cell fail-

ure, organ-specific changes in insulin action, and inter-organ

crosstalk that contribute to disease progression. Moreover, sig-

nificant advances have been made in understanding the neuro-

biological basis of obesity andmechanisms arising from adipose

tissue expansion, both of which are major risk factors for T2D.

Over the past 50 years, we have witnessed an explosion in

knowledge addressing pathophysiology of T1D and T2D that is

now revolutionizing approaches to diabetes treatment and pre-

vention. Thus, any perspective on advances in the understand-

ing of diabetes pathophysiology and treatment cannot be

exhaustively comprehensive. We have structured this review

on three broad areas to highlight recent advances in knowledge

that inform the pathophysiology of T1D and T2D, prevalent or-

gan-specific complications leading to cardiovascular and renal

dysfunction, and recent advances in therapy. In addressing

pathophysiology, we focus on key organs involved in diabetes

pathophysiology namely the beta cell, brain, adipose tissue,

skeletal muscle, and liver, and we discuss environmental deter-

minants that contribute to diabetes prevalence, particularly

in vulnerable populations. Although diabetes complications

include retinopathy and neuropathy, which have been exten-

sively reviewed,7 in this perspective, we focus on cardiovascular

and kidney disease that quantitatively represent major drivers of

diabetes-related health care costs, morbidity, and mortality.

Regarding diagnosis and treatment, we focus on potential roles

of precision approaches to refine therapy, advances in the pre-

vention and treatment of T1D, and the new era of therapeutics

for T2D, which in addition tometabolic control are now impacting

cardiorenal complications and reversing obesity.

PATHOPHYSIOLOGY OF DIABETES—CURRENT STATE
AND FUTURE PERSPECTIVES

This section will review lessons learned from human genetics ap-

proaches that seek to inform diabetes pathophysiology and re-

view the pathophysiology of T1D. Specific contributions of the
3790 Cell 187, July 25, 2024
brain and nervous system, adipose tissue, skeletal muscle,

and liver to T2D pathophysiology, particularly in humans, will

be reviewed. We will then discuss the importance of environ-

mental factors that play an important role in diabetes patho-

genesis.

Genetics of T2D
At the end of the last century, our understanding of the genetic

landscape for T2D, although not universally accepted, centered

on the notion that only a handful of loci, each with a significant

impact on an individual’s risk for diabetes, would in concert

with environmental risk factors, determine whether an individ-

ual developed diabetes. Two decades later, powered by

hypothesis-free large-scale genome-wide association studies

(GWASs), the genetic landscape now comprises of hundreds

of variants, the vast majority with very small effect sizes.8,9

Most T2D-associated variants do not directly alter protein func-

tion (i.e., change an amino acid) but rather alter their abundance

by modifying regulatory elements in non-coding genomic se-

quences, which control gene expression.8,9 Many of these ele-

ments work in temporal and spatial dependent manners, mean-

ing they give rise to effects on gene expression in precise cell

types and at defined developmental time points.8,9 The greatest

existing challenge and potential opportunity is to map these reg-

ulatory signals to relevant genes, often called ‘‘effector tran-

scripts,’’ which mediate their influence on diabetes risk. Their

identification holds important clues not only into themechanisms

bywhich glucose homeostasis, diabetes progression, and risk of

complications are altered in people with diabetes but also the

potential to identify safe and effective targets for therapeutic

development.

The emergence of single-cell resolution multi-omic datasets

that provide information on whether a gene is expressed in spe-

cific cell types, whether chromatin is accessible to transcription

factors, and whether promoters are in contact with enhancers

provides a powerful strategy for connecting diabetes-associated

variants to their effector transcripts.10 When these data are

coupled with high-throughput cellular phenotyping efforts that

alter the expression of hundreds or thousands of genes, the dis-

ease relevance of altered gene expression linked to variants can

be assessed at scale.11

Although each of these signals provides an opportunity for bio-

logical insight into the underlying pathophysiology of diabetes,

unlike in monogenic forms of diabetes, there is currently no

direct path to precision diagnostics or medicine. There has

been considerable interest in overlaying genetic data for cardio-

metabolic and glycemic traits with those derived for T2D

risk.12,13 Shared signals provide important clues regarding un-

derlying tissues and mechanisms through which variants alter

the risk for diabetes or its complications. For example, genetic

signals that are shared between T2D and proinsulin levels point

to a mechanism of action in the pancreatic islet. Both ‘‘hard’’ and

‘‘soft’’ clustering approaches have been deployed by re-

searchers to identify common processes, called clusters, which

are defective in T2D (e.g., insulin action, beta cell function, dys-

lipidemia), and their clinical utility is being closely evaluated.8,13

Since most genetic studies have been performed in European

populations, efforts are urgently needed to perform similar
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studies in more diverse populations to prevent health disparities

arising from limited access to genetically informed diabetes care

that addresses diabetes heterogeneity.

Key determinants of beta cell failure and strategies to
enhance beta cell function
From the early 1990s, key components of the machinery

coupling glucose metabolism to insulin secretion were demon-

strated to be critical for glucose homeostasis through identifica-

tion of mutations causing monogenic forms of diabetes.14–16

Loss-of-function mutations in the key glycolytic enzyme glucoki-

nase demonstrated the impact of effects of glycolysis on insulin

secretion.14 The discovery that transcription factors (HNF1A/

HNF4A) first described in the liver are also crucial to the develop-

ment and maintenance of the endocrine pancreas set the stage

for a wealth of discoveries showcasing the importance of spe-

cific steps of pancreas and endocrine cell development that ulti-

mately generate insulin-producing beta cells.17,18 As the full

allelic spectrum of variation in these genes has emerged, it is

now recognized that rare fully penetrant mutations have large ef-

fects that manifest as diabetes early in life while alleles of more

modest effect, which can either alter protein function or gene

expression, also contribute to risk for T2D.19

Our mechanistic understanding of the various ways that beta

cell function can be compromised has benefited from human ge-

netic discoveries (Figure 1). Unexpected links between the

exocrine- and endocrine pancreas demonstrated initially by rare

mutations in the gene encoding for a digestive enzyme

(carboxyl-ester lipase) and more recently by common variants

associated with T1D and T2D, which alter levels of circulating

exocrine pancreatic enzymes, support epidemiological and clin-

ical evidence for links between pancreatic diseases such as

pancreatitis and cystic fibrosis and endocrine cell dysfunc-

tion.9,20 These observations provide opportunities to improve

our understanding of the crosstalk between the endocrine and

exocrine pancreas. Several lines of evidence now support a

role for defective autophagy in maintaining beta cell functional

mass.11 Other genes that have emerged fall into expected cate-

gories of ion channels, cell cycle control, and transcription factors

pointing to defects in function, proliferation, and development.

Studies of human pancreas and islet tissue from cadaveric do-

nors have also demonstrated differences in gene expression, islet

composition, intra-islet crosstalk, and epigenetics supporting

reduced beta cell mass, islet cell de-differentiation, and meta-

bolic defects as contributing factors to diabetes patho-

genesis.21,22

Given the importance of beta cell function in maintaining

normal glucose tolerance, there is interest in strategies to

enhance ‘‘functional beta cell mass’’ as a therapeutic approach

for both T1D and T2D. Human genetics has supported the

KATP channel (sulphonylureas) and glucokinase (glucokinase ac-

tivators) as potential targets for improved insulin secretion. The

demonstration that truncated protein variants in the SLC30A8

gene, which is expressed almost exclusively in pancreatic beta

cells, protect individuals from T2D has focused efforts on the

development of antagonists against this zinc transporter

ZnT8.23 How loss of this channel promotes enhanced beta cell

function remains poorly understood, but the lack of evidence
from human genetics for adverse on-target effects makes this

an attractive therapeutic pursuit. Undoubtedly the star of the

show is the GLP-1 receptor (GLP-1R). Although of interest for

decades before GWASs provided support for its efficacy as a

therapeutic target, human genetics has provided concrete evi-

dence to support its benefit in lowering circulating glucose and

promoting desirable cardiometabolic effects.24 The success of

the GLP-1R agonists (GLP-1RAs) with positive effects beyond

glycemic control, such as weight loss and reduced cardiovascu-

lar mortality, makes it challenging to develop new therapies

exclusively targeting improved beta cell function. The growing

success of the GLP-1 class also highlights the huge potential

of therapeutics that target disease biology from multiple stand-

points.

Pathophysiology of T1D
T1D accounts for 5%–10%of all diabetes cases and results from

autoimmune-mediated destruction of pancreatic beta cells. The

year 2021marked the 100th anniversary of the discovery of insu-

lin, an event that transformed T1D from a once fatal diagnosis

into a chronic health condition. Over the ensuing 100 years,

knowledge gains have facilitated remarkable advances in dia-

betes management, as well as the recent approvals of the first

disease-modifying therapy and the first cell-based therapy for

T1D.25 However, despite these remarkable achievements, only

about 20% of individuals with T1D are able to achieve optimal

glycemic control,26 and life expectancy for those with T1D re-

mains 8–17.7 years shorter than those without diabetes, de-

pending upon age at diagnosis.27,28 We will briefly summarize

current understanding of T1D pathophysiology to set the stage

for subsequent discussion of how this knowledge has informed

novel strategies for disease prevention and reversal.

GWASs have identified over 60 loci that contribute to T1D ge-

netic risk, showing that T1D is highly heritable.29 The ability to

identify T1D genetic risk has facilitated a variety of natural history

studies, including birth cohorts assembled through newborn

screening and cross-sectional cohorts assembled through tar-

geted autoantibody screening of affected families. Longitudinal

assessment of these cohorts has provided insights into environ-

mental associations, potential disease triggers, the trajectory of

islet autoimmunity, and the identification ofmetabolic and immu-

nologic phenotypes during disease evolution.30–33 One of the

most important observations informing the natural history of

T1D came from a combined analysis of four birth cohorts from

the US and Europe, which demonstrated that the presence of

two ormore islet autoantibodies led to a >80% risk of developing

clinical T1D over 15 years of follow-up.34 In 2005, this observa-

tion formed the basis for a new disease staging system, where

stage 1 T1D is defined by the presence of two or more autoanti-

bodies, stage 2 T1D is defined asmultiple autoantibody positivity

and dsyglycemia, and stage 3 T1D is defined by overt hypergly-

cemia based on American Diabetes Association standards.35

CNS and neural mechanisms
Extensive preclinical data highlight the essential role of the brain

in the control of body weight and, in turn, the development of IR

and obesity in susceptible individuals. The importance of the

central nervous system (CNS) in the control of glycemia and
Cell 187, July 25, 2024 3791



Figure 1. Schematic representation of the

potential ways in which pancreatic beta

cells are damaged through environmental

and genetic factors
Upper arrows represent genetic or environmental
determinants. Lower arrows represent mecha-
nisms leading to beta cell dysfunction. Diabetes
can arise due to abnormal beta cell development,
loss of functional beta cell mass, or through de-
fects in beta cell function. Figure was prepared in
BioRender.
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Figure 2. Schematic representation of the interactions between the

brain and periphery that may regulate systemic glucose homeo-

stasis
Outputs of glucose-sensing neurons a transmitted via the brain stem and the
autonomic nervous to modulate hepatic glucose production and insulin and
glucagon release by the liver.
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the pathophysiology of T2D is discussed, with an emphasis on

insights from human studies. Obesity is an important risk factor

for developing T2D. There is broad acceptance that regulation of

appetite and energy expenditure, key factors in obesity patho-

genesis are centrally regulated, with important contributions

from gut- and adipose-derived hormones such as ghrelin and

leptin, for example, and potential contributions of alterations in

gut microbiota. Much progress has been made in mapping the

neural circuits predominantly in the hypothalamus and brain

stem that regulate these processes, and these concepts have

been extensively reviewed.36 More recently, there has been

growing attention on elucidating the role of the central and auto-

nomic nervous system in integrating body weight regulation and

glucose metabolism and specifically the role of the brain in the

maintenance of optimal circulating glucose concentrations.37

Most of these insights have derived from studies in animal

models. For example, both vagal and CNS circuits are essential

for nutrient sensing, linking ingestion of fat or sugar to dopamine

release and over-eating in preclinical studies38 (Figure 2). This

section will focus on recent insights derived mainly from human

studies linking central mechanisms to glycemic regulation and

T2D and the implications of these observations for therapy.

The central and autonomic nervous systems play important

roles in the maintenance of normoglycemia in humans and ani-

mals, through the regulation of hepatic glucose production

(HGP) and via counterregulatory mechanisms that restore

normal glucose levels in response to hypoglycemia (Figure 2).

Pancreatic islets are extensively innervated with nerve fibers

originating from the hypothalamus, and manipulation of brain
glucose levels in the arcuate nucleus of themouse hypothalamus

can lower insulin secretion and impair glucose tolerance.39

Intriguingly, insulin receptors within tanacytes also contribute

to regulation of systemic IR in mice.40 Intranasal administration

of insulin to healthy men undergoing a 2 h. hyperglycemic clamp

augmented insulin secretion in a subset of study subjects, with a

strong hypothalamic response to insulin as judged by brain

changes quantified using functional magnetic resonance imag-

ing (MRI) in response to insulin.41 In the context of this short-

term experimental paradigm, there appears to be inter-individual

variation governing the relative importance of brain insulin

action for glucose-stimulated insulin secretion. Furthermore, in-

ter-individual differences in brain insulin availability have been

described, and brain insulin transport is diminished in subjects

with IR and with increased age. Additionally, cerebrospinal insu-

lin levels and brain responses to exogenous insulin are also lower

in individuals with obesity.42

Brain insulin action, studied in humans following intranasal

insulin administration, also contributes to regulation of whole-

body insulin sensitivity and HGP.42 Interestingly, hypothalamic

insulin action is linked to control of peripheral insulin sensitivity

in women predominantly during the follicular but not the luteal

phase of the menstrual cycle.43 The therapeutic potential for

targeting the brain to correct the metabolic defects associated

with diabetes is exemplified by studies using administration

of fibroblast growth factor-1 (FGF-1). A single intracerebroven-

tricular (icv) injection of FGF-1 produces sustained remission

of experimental diabetes in mice and rats through weight

loss-independent enhancement of glucose clearance.44 Similar

results, principally sustained remission of diabetes, were

described using intranasal or icv administration of FGF-4 in

mice.45 The feasibility of using FGF administration to produce

sustained diabetes remission in older mice, rats, and monkeys

(and perhaps 1 day in humans) is an important area for further

research.

Whether structural and functional defects in the brain

contribute to the development of diabetes is an active area of

investigation. MRI detects evidence for hypothalamic gliosis in

the medial basal hypothalamus of individuals with higher body

mass index (BMI), yet individuals with hypothalamic gliosis

were also found to have higher insulin levels and IR determined

by homeostatic model assessment of IR (HOMA-IR), indepen-

dent of BMI.46 Detection of hypothalamic gliosis by MRI was

found to predict the subsequent development of IR over a

1-year period of follow-up.46 Interestingly, the extent of hypotha-

lamic gliosis may be reversed in some but not all subjects after

bariatric surgery; however, the importance of these directional

changes for associated improvements in glucose control is diffi-

cult to ascertain.47

Whether the brain is important for the glucose-lowering and

metabolic activities of some medicines used for the treatment

of T2D in humans is uncertain. The dopamine receptor D2

agonist bromocriptine reduces bodyweight and improves insulin

sensitivity andwas approved for use in T2D in 2009, although it is

not widely prescribed. GLP-1RAs, introduced in 2005, reduce

gastric emptying, food intake, bodyweight, and systemic inflam-

mation through mechanisms requiring CNS GLP-1Rs.48,49

Whether CNS GLP-1Rs are required for glucose control is less
Cell 187, July 25, 2024 3793
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clear, as GLP-1RAs directly increase insulin and somatostatin

and reduce glucagon secretion through islet GLP-1Rs on a, b,

and d cells independent of CNS GLP-1R activity. Interestingly,

administration of the sodium-glucose cotransporter 2 inhibitor

(SGLT-2i) empagliflozin for 8 weeks to subjects with prediabetes

increased hypothalamic insulin responsiveness as assessed

by intranasal insulin administration and concomitant func-

tional MRI.50 Whether these emerging CNS effects of SGLT2i

contribute to one or more of the pleiotropic actions of SGLT2i

in people with T2D is unclear and requires more careful scrutiny.

Several current and investigational agents being developed for

the treatment of T2D and obesity exert a subset of actions

through the CNS. These include tirzepatide acting through

both glucose-dependent insulinotropic polypeptide receptor

(GIPR) and the GLP-1R,51 as well as glucagon and amylin-con-

taining GLP-1-based therapeutics. Indeed, the principal meta-

bolic actions of amylin agonism, including reduction of gastric

emptying, food intake, and glucagon secretion, all require CNS

amylin receptor signaling.

There is ongoing interest in the link between T2D and higher

rates of neurodegeneration and impairment of cognitive func-

tion.52 Brain insulin responsiveness, assessed following intra-

nasal insulin administration and MRI, is impaired with increasing

age in multiple brain regions of healthy subjects.53 The applica-

tion of 1H magnetic resonance spectroscopy to study brain me-

tabolites in male and female patients with T2D (HbA1c > 7.5%,

mean age 47.4) versus age- and sex-matched controls revealed

elevated brain glucose, taurine,myo-inositol, and miscellaneous

choline-containing compounds in the CNS of people with T2D.54

Individuals with poorly controlled T2D also exhibit impaired cere-

bral glucose transport that may be partially reversible with even

short-term (12 week) periods of intensification of diabetes ther-

apy and improved glucose control.55 Interestingly, a randomized

trial of intranasal insulin administration once daily for 24 weeks to

male and female subjects 50–85 years of agewith T2D increased

cerebral blood flow and improved several parameters of cogni-

tive function aswell as walking speed.56 GLP-1RAs have also ex-

hibited neuroprotective properties in preclinical studies and

reduce the rates of incident dementia in clinical trials and in

real-world studies.57,58 Oral semaglutide is currently being

studied in two phase 3 trials for the treatment of people ages

55–85 with early Alzheimer’s disease with or without T2D. Taken

together, these observations portend ongoing interest in

exploring mechanisms in humans linking CNSmechanisms, dia-

betes pathogenesis, and response to current and novel thera-

peutics. Whether more brain-penetrant GLP-1 medicines will

exhibit greater neuroprotection without higher rates of adverse

events (AEs) is not known. Given the overlapping prevalence of

neurodegenerative disorders with T2D and the increases of

each with aging, identifying shared pathways could lead to addi-

tional treatment options that could tackle both disorders.

Adipose tissue dysfunction and lipid mediators of IR
A major driver of T2D is obesity and increased adipose tissue

mass.59 Adipocytes are distinct from other cells in their ability

to store lipids. Up to 80% of white adipocyte tissue mass can

be composed of lipid droplets, an organelle containing a phos-

pholipid monolayer, and a core of triglycerides and cholesterol
3794 Cell 187, July 25, 2024
esters. The energy storage capacity of adipocytes allows them

to play a central role in communicating energy availability as

an endocrine organ. Disruption of energy homeostasis by caloric

excess leads to IR in adipocytes; these cells expand and swell

reaching maximal capacity by hypertrophic growth that induces

tissue hypoxia. Adipocyte hypertrophy increases the surface-to-

volume ratio that correlates with adipocyte IR and reduced

production of the insulin-sensitizing adipokine adiponectin.

Adipocyte hypertrophy also increases inflammatory cytokine

production, leading to increased infiltration of pro-inflammatory

immune cells and systemic inflammation.60 Metabolically, adi-

pose tissue IR increases lipolysis elevating circulating free fatty

acids (FFAs).61 Thus, adipose tissue expansion is not only a

manifestation of tissue-specific IR but also a driver of systemic

IR by altering adipokine release, promulgating inflammatory cy-

tokines, and increasing FFA delivery to other organs.

Increased circulating FFAs induce IR in adipocytes, liver, and

skeletal muscle in part through increased production of diacyl-

glycerides (DAGs) and ceramides61–64 (Figure 3). Increased

levels of DAGs and ceramides in human plasma are observed

in prediabetes and have been proposed as a diagnostic marker

of metabolic health.65 DAGs and ceramides directly drive IR

through the activation of phosphatases. Mechanistic experi-

ments in mice and cells demonstrated that DAGs bind protein ki-

nase C ε (PKCε) isozymes at the plasma membrane, leading to

inhibitory phosphorylation of the insulin receptor that limits its ki-

nase activity and impairs insulin signaling.66 This regulation is

stereospecific, with sn-1,2 DAGs having higher affinity for

PKCε and localization to the plasma membrane, while sn-1,3

and sn-2,3 DAGs have higher localization to the lipid droplet

and the endoplasmic reticulum (ER). Excess FFAs in T2D also in-

crease the production of ceramides, especially long-chain C16

and C18.67 Ceramides activate protein kinase C z (PKCz) for

inhibitory phosphorylation of Akt or protein phosphatase 2A

(PP2A) to remove activating phosphorylation of Akt, leading to

impaired insulin signaling.68 Induction of IR is specific to ceram-

ides, as other sphingolipids such as dihydroceramides or sphin-

gomyelin fail to induce IR or to inhibit lipolysis in mouse

models.69 As DAG and ceramide levels increase in skeletal mus-

cle and liver, selective IR exacerbates ectopic lipid deposition,

further accelerating diabetes pathophysiology.

Another way in which obesogenic adipose tissue drives IR is

through decreased release of fatty acid esters of hydroxy fatty

acids (FAHFAs).70 FAHFAs are a class of complex lipids with an

ester linkage of two fatty acids that have been shown to improve

insulin sensitivity and are decreased with T2D. FAHFAs exert their

activity in part by binding to G-protein-coupled receptors in key

metabolic tissues to regulate insulin sensitivity, adipogenesis,

and energy expenditure in mice.71 Recent work in mice demon-

strated that adipose triglyceride lipase (ATGL) that regulates lipol-

ysis may act as a synthase for FAHFAs, providing a potential link

between FAHFAs and lipolysis in T2D through altered ATGL func-

tion.72 The convergence of multiple adipose-derived signals in the

obesogenic state drives a feedforward cycle that worsens sys-

temic IR. Adipocyte IR, characterized by impaired glucose uptake

has beenmechanistically linked to altered release of insulin-sensi-

tizing adipokines and complex lipids, which impact insulin action

elsewhere. These changes particularly in liver and skeletal muscle



Figure 3. Lipid-mediated disruption of insu-

lin signaling
In type 2 diabetes (T2D) and the metabolic syn-
drome, basal lipolysis is increased, leading to
elevated circulating free fatty acids. These free
fatty acids directly inhibit insulin signaling in
several tissues including hepatocytes and skeletal
muscle. Once taken up into these cells, these free
fatty acids are processed into ceramides and
DAGs (diacylglycerides), which activate PP2A
(protein phosphatase 2A) and protein kinase C
(PKC) to inhibit AKT (protein kinase B, or Akt) and
mTOR. Decreased insulin signaling in hepatocytes
increases glucose production through inhibition of
forkhead box protein O1 (FOXO1) contributing to
elevated blood glucose levels. The insulin-induced
mTOR-mediated lipogenesis through sterol regu-
latory element binding protein 1 (SREBP1) remains
intact despite impaired insulin signaling via AKT,
leading to fatty liver. In skeletal muscle cells (not
shown) similar signaling defects contribute to
impaired translocation of glucose transporters.
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are quantitatively the major drivers of increased glucose levels in

diabetes.73

Skeletal muscle IR is characterized by an early reduction in in-

sulin-mediated glycogen synthesis,74 impaired insulin-mediated

GLUT4 translocation to the plasma membrane, and reduced

glucose oxidation.61 Over time the skeletal muscle IR contributes

to skeletal muscle atrophy, diminished exercise capacity, and

reduced mitochondrial mass and bioenergetics.75 Hepatic IR

manifests primarily as increased HGP secondary to impaired

suppression by insulin of gluconeogenic genes while promoting

lipid accumulation. Hyperglycemia per se also exacerbates IR in

adipose tissue, skeletal muscle, and liver through increased

flux of glucose through the hexosamine biosynthesis pathway

to generate uridine diphosphate-N-acetyl glucosamine (UDP-

GlcNAc), the precursor to N- and O-linked glycosylation.

O-linked glycosylation of insulin signaling proteins including

Akt further induces IR.76 Thus, shared pathophysiology con-

verges to impair insulin action in adipose tissue, skeletal muscle,

and liver to perturb metabolic homeostasis in T2D.

Adipose tissue remodeling in obesity is an important driver of

systemic IR, inflammation, and aberrant systemic homeostasis

of glucose and lipids. Future work is necessary to understand in-

ter-tissue communication, including novel mediators such as

exosomes, mechanisms that govern the mobilization of lipids

between tissues and organelles, and functional exploration of

uncharacterized lipids that will further elucidate lipid dysregula-

tion in T2D and the complex pathophysiological ramifications

of these pathways in perpetuating IR.

T2D and MASLD
Hepatic metabolic dysfunction is increasingly recognized in

many patients with T2D and also contributes to the pathophysi-

ology of impaired glucose homeostasis and cardiovascular com-

plications of diabetes. Obesity provokes twin abnormalities in
liver, increasing both hepatic glucose

and lipid production. T2D is a well-estab-

lished risk factor for the excess triglycer-

ide accumulation that defines the recently
renamed metabolic dysfunction-associated steatotic liver dis-

ease (MASLD),77 which is now the leading cause of chronic liver

disease in the United States.78 MASLD ranges in severity from

simple steatosis, a prevalent and reversible state,79 to the inflam-

matory changes that mark metabolic dysfunction-associated

steatohepatitis (MASH) and predispose to fibrosis,80 the major

contributor to mortality in affected patients.81 Why some individ-

uals develop more severe complications is unknown, but the

‘‘multiple-hit’’ hypothesis82 that lipid-laden hepatocytes induce

aberrant non-parenchymal cell (NPC) activation best explains

the progression along this pathogenic continuum. GLP-1-based

pharmacotherapymay be helpful in early-stage disease but does

not alter disease pathology in the setting of advanced fibrosis.83

With available livers for transplantation already limiting, meta-

bolic liver disease represents a growing and significant unmet

need in a population living with high rates of obesity.

The primary hit—Hepatic lipid accumulation

Increased liver triglycerides in patients with T2D84 aremultifacto-

rial,85 but a hallmark is excess de novo lipogenesis (DNL).86

DNL is regulated by both the hormonal and nutrient state.

In the healthy liver, post-prandial insulin action is transduced

via a signaling cascade to Akt, a critical node in determining

insulin action.87 PI3K-mediated Akt-Thr308 phosphorylation

prompts mTORC2-mediated phosphorylation at Akt-Ser473,87

which within minutes,88 leads to FoxO1 inactivation to repress

HGP. Later, Akt phosphorylates tuberous sclerosis complex 2

(TSC2) to increase mTORC1 signaling,89 leading to increased

sterol regulatory element binding protein 1c (SREBP-1c) activity

at lipogenic promoters (Figure 3).89 In the insulin-resistant liver,

Akt-mediated FoxO1 phosphorylation is attenuated, leading to

increased HGP and hyperglycemia, but somehow, insulin’s abil-

ity to promote DNL persists90 (Figure 3). Recent work has evalu-

ated mechanisms of this paradox.91 Patients with MASLD show

reduced levels of the Akt-Ser473 phosphatase PH domain and
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leucine-rich repeat protein phosphatase 2 (PHLPP2), due to car-

bohydrate response element binding protein (CHREBP)-induced

expression of its degradation machinery.92 As mice lacking he-

patocyte PHLPP2 show excess DNL,93 these data suggest

that Akt must be appropriately stimulated but also inactivated

in a timely fashion to maintain normal hepatic physiology.

Coupled with chronic hyperinsulinemia in many subjects with

T2D, these data suggest a revision of the bifurcation model of in-

sulin signaling90 that shifts focus toward kinetics of insulin action.

Inhibition of FoxO1 to repress glucose production represents

early insulin action,94 but an extension of Akt activity induces a

‘‘late’’ lipogenic response.95 Other potential cell-autonomous

mechanisms for excess DNL also contribute,96 as do adipose97

and gut signals,97–99 leading to excess hepatic lipids in patients

with T2D. These mechanistic findings are consistent with meta-

analyses showing excess liver fat is associated with incident T2D

even when adjusted for BMI/adiposity and other potential

confounders.100 Hence, beyond shared risk factors, T2D and

MASLD likely increase their respective risks in a bi-directional

manner.96,101

Hepatocyte-NPC interactions drive MASH pathogenesis

Individuals with T2D often show excess hepatic lipids in imaging

tests.What is less clear is which of these individuals will progress

to clinically meaningful liver disease, or the time course or

inciting factors that initiate this progression. Similarly, GWASs

in subjects with T2D and MASLD have exposed common risk al-

leles in genes that regulate bodyweight (i.e., FTO) or hepatic lipid

accumulation (i.e., PNPLA3, TM6SF2, and APOB),102,103 but

these same risks do not translate well to prediction algorithms

of disease progression to MASH. Thus, patients with T2D and

MASLD may have hepatocytes that intrinsically store but cannot

handle excess lipid without cellular injury and/or non-genomic

risks that determine hepatocyte-NPC communication, which

culminate in inflammation and fibrosis. To distinguish between

these hypotheses, investigators have relied on modeling

MASH in mice. Traditional high-fat diets (HFDs) induce IR, liver

steatosis, and modest inflammation but not fibrosis.104 Once

popular methionine-choline-deficient (MCD) diets that induce

liver injury have largely fallen out of favor due to significant

anorexia and progressive weight loss. While HFD-MCD hybrid

diets were eventually developed,105 many of these diets fail to

mimic obesity and IR that characterizes human disease.106 To

fill the resultant gap, protocols were developed combining fruc-

tose-containing drinking water with diets rich in saturated fat, su-

crose, and sufficient cholesterol to ‘‘humanize’’ the model, as

commonly used strains of mice only absorb a small portion of di-

etary cholesterol.107–109 These nutrient-dense diets result in

obesity, IR, and all three cardinal features of MASH—hepatic

steatosis, inflammation, and fibrosis—and eventually hepatocel-

lular carcinoma (HCC),110 and thus represent the current state-

of-the-art in MASH modeling111 and are particularly important

to mimic comorbid T2D and MASH.

This innovation has enabled better understanding of how he-

patocyte-NPC interactions determine heterogeneity in disease

trajectory. For example, while hepatocyte IR has long been

considered causal to the fasting hyperglycemia that often her-

alds T2D,112 recent studies have re-positioned hepatocytes

also as causal determinants, not simple bystanders, in liver
3796 Cell 187, July 25, 2024
inflammation and fibrosis. For example, hepatocytes show a sur-

prisingly large endocrine contribution to NPC infiltration and acti-

vation through elaboration of chemotactic113 and fibrogenic114

cytokines, even in the absence of detectable hepatocyte

injury.114 Upstream determinants of this hepatocyte response

include processes that are increased in individuals with T2D

and MASLD, such as re-activated Notch signaling115,116 that in-

creases both HGP117 and DNL.118 Understanding dynamics of

these hepatocyte signals may have translational implications,

given the ability to target hepatocyte pathways with relative

specificity, using GalNAc-modified anti-sense oligonucleotides

or siRNA, and potentially, in vivo base editing.

Despite recent advances, many open questions remain. Key

directions for the field include:

Role of hyperinsulinemia and non-hormonal factors in co-inci-

dent T2D/MASLD. IR in T2D prompts compensatory hyperin-

sulinemia.112 Data from humans show a positive relationship be-

tween plasma insulin levels and hepatic DNL,119 corroborating

animal studies suggesting that inappropriate timing of insulin ac-

tion may be causal to MASLD. Intriguingly, blocking insulin

secretion with octreotide decreased DNL markers and liver tri-

glyceride in rats.120 This concept is now being tested in non-dia-

betic individuals using diazoxide (NCT05729282); whether these

results will extrapolate to individuals with T2D is unknown. Other

hormones (i.e., glucagon) clearly contribute as well, not only by

forcing glycogen breakdown but also by reducing hepatic lipids.

Similarly, fructose121 and cholesterol109 may affect hepatic lipid

production. Finally, whether non-nutrient and non-hormone de-

terminants of HGP, such as sympathetic outflow to the liver,122

similarly co-regulate lipid production is less well understood.

Spatial determinants ofMASH. The liver is a heterogeneous tis-

sue, with differing oxygen tension and nutrient states across the

hepatic lobule, leading to ‘‘zonation’’ of metabolic functions such

as gluconeogenesis and lipogenesis.78 Similarly, MASH can be

characterized as primarily pericentral or periportal—especially

in pediatric populations—with zonal subtypes associated with

different degrees of metabolic and liver pathology.123 For rea-

sons that are yet unclear, periportal disease is more likely in pa-

tients with metabolic syndrome and T2D.124 Similarly unknown is

whether these different patterns reflect a continuum of disease.

Understanding this biology may lead to trials in pericentral or

periportal disease with therapeutics that target zonated path-

ways (i.e., Notch, farnesoid X receptor [FXR], thyroid hormone

receptor [TR], and peroxisome proliferator-activated recep-

tor [PPAR]).

Fibrosis regression pathways. Despite greater understanding

of pro-inflammatory and fibrotic pathways in liver, relatively

less attention has been paid to how fibrosis is cleared and how

hepatocyte pathways may affect fibrosis resolution. We specu-

late the existence of commensurate ‘‘fibrosis-off’’ signals for all

the recently discovered hepatocyte-determined ‘‘fibrosis-on’’

signals and that a systematic approach for discovery of regres-

sion pathways will have similar impact on liver fibrosis as current

work in vascular lesion resolution in atherosclerosis,125 with

possible translational implications. Novel therapeutic targets

may be of particular value in individuals with T2D, who are

partially resistant to the weight loss and downstream hepatic

benefits, of incretin therapy.
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Bi-directional hepatocyte-NPC crosstalk. Although we high-

light the role of hepatocytes as orchestrators of obesity-induced

chronic liver injury, NPC populations simultaneously affect

hepatocyte health. For example, hepatic stellate cells are an

important source of hepatocyte growth factor (HGF), an impor-

tant determinant of hepatocyte regeneration in reaction to

injury,126 but whether these cells regulate hepatocyte metabolic

processes deranged in T2D requires further study. Similarly,

increased recruitment of immune cells contributes to altered he-

patic insulin sensitivity, which may explain the modest beneficial

effects of anti-inflammatory agents in individuals with T2D.127

Genetic adaptation to lipid overload. Recent studies found

convergent gain-of-function somatic mutations in FOXO1 that

appear to be clonally selected in liver biopsies of patients with

MASLD/MASH.128 Conceptually similar work identified muta-

tions in other metabolic pathways in mouse models.129 These

data suggest the attractive hypothesis that chronic lipid overload

may lead to genetic alterations to protect from further injury.

Equally intriguing, this finding also represents a plausible mech-

anism to explain the epidemiologic associations between

MASLD and incident T2D.

Relationship with CVD. Hepatic lipid excess increases likeli-

hood of liver-related mortality, but similar to associations in indi-

viduals with T2D, the leading cause of death in patients with

MASLD/MASH is CVD.130 Given prevalent comorbidities that

directly accelerate CVD, disentangling potential mechanisms

will require further mechanistic studies in preclinical animal

models and humans.

Social drivers of health: Environments, populations, and
molecular mechanisms
Diabetes is a global pandemic, impacting 500million lives world-

wide that disproportionately burdens low and middle-income

populations and countries.2 Social drivers (determinants) of

health (SDoH) are the conditions in which people are born,

grow, live, work, and age.131–133 SDoH are shaped by power,

money, and resources and are responsible for greater than

60%–70% of health and deleteriously impact T2D.131–133 The

SDoH can be considered within the socioecological model,

where social factors, community, and interpersonal relationships

influence health behaviors.6 The SDoH include economic stabil-

ity (employment, income, expenses, debt, etc.), neighborhood

and physical environment (housing, transportation, safety,

parks, pollution, geography, etc.), education (literacy, language,

etc.), food (food security, nutrition security, access to healthy op-

tions, etc.), community and social context (social integration,

support systems, community engagement, discrimination,

stress, etc.), and the healthcare system (insurance, provider ac-

cess and availability, linguistic and cultural competency, quality

of care, etc.).131,132 SDoH have both population-level compo-

nents (e.g., the food system) and individual-level components

(e.g., food insecurity), with the individual-level components be-

ing referred to as non-medical health-related social needs.132

The development and control of T2D is uniquely sensitive to

SDoH due to the multifaceted effect of SDoH on dysglycemia,

from lifestyle behaviors (poor nutritional intake, physical inac-

tivity, sleep insufficiency, stress, etc.) to molecular mechanisms

governed by inflammation, hypothalamic-pituitary-adrenal
(HPA) axis activation, sympathetic nervous system activation,

gut microbial dysbiosis, epigenetic modification, and mitochon-

drial dysfunction. The impact of SDoH on inequity in T2D out-

comes among people and populations has been recently re-

viewed.131,132 Here, we review mechanisms linking SDoH and

T2D development and progression, using food insecurity and

air pollution as two exemplars, and discuss future directions to

advance the field.

Food and nutrition insecurity

Food security is defined as ‘‘access by all people at all times to

enough food for an active, healthy life,’’ while nutrition security

was recently defined as ‘‘a condition of having equitable and sta-

ble availability, access, affordability, and utilization of foods and

beverages that promote well-being and prevent and treat dis-

ease.’’134,135 Thus, nutrition security encompasses food secu-

rity, dietary quality, and SDoH. Community and individual-level

food insecurity are associated with diabetes incidence, preva-

lence, and poorer control leading to worse long-term out-

comes.134 Food insecurity drives its deleterious impact on dia-

betes through: (1) diet and nutrition; and (2) stress. Food

insecurity is associated with lower fruit and vegetable intake,

along with increased processed foods, refined carbohydrates,

saturated fats, added sugars, and unhealthy snacks, leading to

worse overall diet quality.134 The overconsumption of these ul-

tra-processed and calorically dense foods and underconsump-

tion of whole grains, fish, nuts, and legumes, essential compo-

nents of the Mediterranean and American Heart Association’s

Life’s Essential 8 diet are linked to inflammation in the short

term through oxidative stress and in the long term lead to adi-

pose tissue expansion, with resultant adipokine-mediated

inflammation.136,137 Food insecurity has been associated with

increased inflammation (elevated C-reactive protein [CRP] and

white blood cell count),138 allostatic load (neuroendocrine and in-

flammatory components including serum DHEA-S and urinary

cortisol [HPA axis] and urinary epinephrine and norepinephrine

[SNS]), and dietary inflammatory index.139 Inflammation medi-

ates the association of food insecurity with IR in diabetes140

and supplemental nutrition assistance moderates the associa-

tion of food insecurity with inflammation.141 Food insecurity

has also been linked with reductions in gut microbial diversity

in a limited set of studies, which could contribute to perturbed

inflammatory responses.142,143 Food insecurity stress impacts

compensatory behaviors (time and effort to secure food) and

inflammation (toxic stress activates inflammatory path-

ways).134,144 The multidimensional complexity of food and nutri-

tion security makes it difficult to establish animal models to inter-

rogate mechanisms, but investigators have recently used

unpredictability in the timing and amount of food to recapitulate

food insecurity.145,146 This protocol led to changes in food intake

with a heightened attraction to palatable food, weight gain, and

impaired coping mechanisms andmemory.145,146 Future studies

are warranted to determine the best model to interrogate the

pathophysiological pathways of food insecurity to determine

precise molecular mechanisms.

Air pollution

Air pollution is a leading environmental health risk.147 Air pollu-

tion is an exemplar SDoH, with people living in lower socioeco-

nomic status environments being more adversely impacted by
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air pollution.147 Three leading air pollutants are ozone (O3) in

smog, nitrogen dioxide (NO2), an atmospheric gas formed by

the oxidation of nitric oxide, and particulate matter (PM), solid,

small particles within aerosolized liquid droplets formed during

the combustion of fuels.147 PM is defined by size: coarse

(PM10), fine (PM2.5), and ultrafine particles with aerodynamic di-

ameters of 2.5–10 mm, <2.5 mm, and <0.1 mm, respectively.147

PM is associated with IR, dysglycemia, hyperlipidemia, incident

T2D, prevalent T2D, progression to T2D complications, andmor-

tality across the world with Mendelian randomization studies

suggesting a causal relationship.148–155 These associations are

strongest among individuals with underlying comorbidities and

lower socioeconomic status.156,157

Evolving evidence from observational studies, human and

non-human acute exposure, and non-human chronic exposure

studies suggests that pollution mechanistically impacts IR, gly-

cemia, and T2D through pathophysiological activation of multi-

ple pathways, including primary initiating pathways and second-

ary effector pathways. Primary initiating pathways include (1)

oxidative stress (reactive oxygen and nitrogen species) via redox

cycling, depleting cellular thiols, or activating lymphocytes in

pulmonary and non-pulmonary vascular beds as mediator of

cellular stress signaling, inflammation (e.g., nuclear factor kappa

B and NLRP3 inflammasome), and direct impacts on pancreatic

beta cells158–163; (2) biological intermediates such as damage-

associated molecular patterns (DAMPs) generated from tissue

damage that recruit neutrophils and activate other immune cells

to drive systemic effects158 (3) direct translocation of pollution

components into extrapulmonary organs including the liver and

kidney164; and (4) alteration of epigenetics through DNA methyl-

ation and histone modification.165 Secondary effector pathways

include (1) systemic inflammation with innate and adaptive im-

mune activation162,166–170; (2) neurohormonal stress pathway

dysregulation with increased sympathetic tone and HPA axis

activation171–176; (3) hepatic steatosis with impaired glucose

metabolism due to mitochondrial dysfunction, ER stress, and

impaired lipid catabolism168,177–179; and (4) potentially alter-

ations in the gut microbiome, including diversity, relative abun-

dance, gut permeability, and increased inflammation.180

DOHaD and SDoH

Consistent with the developmental programming of health and

disease (DOHaD) paradigm, SDoH, including food insecurity

and air pollution, impacts future development of diabetes in

offspring from the periconceptional period through infancy.181

Some of the best evidence for poor maternal nutrition impacting

offspring comes from famines. Adults born across many periods

of famine have greater glucose intolerance and risk of T2D

as adults.181 Maternal exposure to air pollution during precon-

ception and gestation has been shown to significantly impair

beta cell function and size in adult male offspring of C57Bl/6J

mice.182 These effects are thought to be driven by epigenetic

changes including DNA methylation/demethylation, histone

modifications, microRNAs, and long non-coding RNAs.181

In summary, as exemplars, nutrition security and PM, although

contextually different, share common pathophysiological im-

pacts on T2D, including oxidative stress, inflammation, and

HPA axis activation (Figure 4). SDoH impact T2D development

and progression through direct and indirect pathophysiological
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effects from environmental, biological, and social factors.133,183

Further understanding of varying SDoH pathophysiology in ex-

posome-based approaches is critical for developing novel inter-

ventions and policies to address SDoH and advance equity in

T2D prevention and management.132,144 Cross-disciplinary

team science with diverse human participants and novel animal

models capitalizing on expertise across the translational

research continuum are key to determining precise mechanistic

insights.184,185

MECHANISMS OF DIABETES COMPLICATIONS

The persistent metabolic abnormalities associated with diabetes

are responsible for tissue dysfunction that lead to the associated

morbidity and excess mortality. Diabetic retinopathy is a leading

cause of vision loss. Neuropathy and impaired wound healing

directly contribute to painful syndromes or limb loss, and auto-

nomic neuropathy may increase CVD mortality and impair gut

and genitourinary function. Epidemiologically, diabetes and IR

are linked to increased prevalence of certain cancers or to

reduced survival or response to therapy. This section will focus

on two major drivers of diabetes-related morbidity and mortality,

namely CVD and chronic kidney disease (CKD).

Diabetes and CVD
CVD is the major driver of morbidity and mortality in people

with T1D and T2D. Multiple epidemiological surveys across

diverse populations reveal that diabetes amplifies the risk of

atherosclerotic CVD (ASCVD) by 2–5-fold.186,187 Despite signifi-

cant improvement over the past 2 decades in the management

of traditional CVD risks such as hypercholesterolemia and hyper-

tension that have reduced ASCVD prevalence in the general

population, the risk of ASCVD in individuals with diabetes con-

tinues to exceed that of the general population.186,187 Moreover,

the continuum of IR, glucose intolerance, dyslipidemia, and

obesity that characterize themetabolic syndrome or prediabetes

further amplifies ASCVD. The specific manifestations of ASCVD

include coronary artery disease (CAD,manifesting asmyocardial

ischemia and its sequelae), stroke (ischemic and hemorrhagic),

and peripheral vascular disease. The increased risk of heart fail-

ure in diabetes, although due in part to increased ASCVD, cannot

be completely attributable to CAD but also represents direct ef-

fects of the abnormal metabolic milieu characteristic of diabetes

and the metabolic syndrome on cardiac structure and function,

commonly described as diabetic cardiomyopathy.188 A large

body of work at population levels and mechanistic studies in hu-

mans and animal models have provided insight into the complex

pathophysiology of CVD in diabetes.

No one mechanism singularly accounts for the increased

CVD risk in diabetes. The association between increased preva-

lence of multiple risks that cluster in diabetes (i.e., hypertension,

dyslipidemia, obesity, hypercoagulability, increased inflamma-

tion, hyperglycemia, IR, kidney disease, physical inactivity, and

others) interact in complex ways to drive CVD.189 Thus, the clin-

ical challenge implicit in strategies aimed at reducing the burden

of CVD transcends efforts that focus on a single risk factor such

as hyperglycemia.190 Moreover, certain specific comorbidities

appear to cluster with specific manifestations of CVD. For



Figure 4. Mechanisms by which environ-

mental and social determinants increase

the likelihood of developing type 2 diabetes

in susceptible individuals
Social determinants of health including air pollu-
tion and nutrition insecurity activate several path-
ways including hypothalamic-pituitary-adrenal
(HPA) axis, which contributes to insulin resistance
and exacerbates beta cell dysfunction. These
environmental stressors have also been associ-
ated with activation of inflammatory pathways,
promotion of oxidative stress, gut microbial dys-
biosis, and epigenetic modifications, all of which
have been implicated in accelerating metabolic
disturbances that are characteristic of T2D and the
metabolic syndrome.
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example, dyslipidemia, characterized by increased low-density

lipoprotein (LDL) cholesterol, reduced high-density lipoprotein

(HDL) (or altered HDL composition), and hypertriglyceridemia

(with persistence of atherogenic remnant lipoprotein particles

derived by lipolysis from very low-density lipoprotein [VLDL]

and chylomicrons), is an important driver of CAD in diabetes.191

A diabetes-specific mechanism linked in humans to decreased

clearance of atherogenic triglyceride rich lipoproteins is induc-

tion of apolipoprotein C3 (APOC3).191 The major predictors of

CAD in a large European population cohort, including individuals

with and without diabetes, were in descending order: diabetes

duration, dyslipidemia, HbA1c, blood pressure, and renal func-

tion. Whereas acute myocardial infarction was predicted in de-

scending order by LDL cholesterol, HbA1c, smoking, and dia-

betes duration, the major drivers of heart failure were obesity,

HbA1c, renal function, and physical activity. Similarly, the major

drivers of cerebrovascular disease were HbA1c, blood pressure,

and smoking.187 Thus, targeting single comorbidities will fall

short in reversing CVD burden in diabetes, and therapies will

require a personalized approach based on risk evaluation. This

has prompted investigations into whether novel biomarkers

such as mitochondrial metabolites may also predict major

adverse cardiovascular events,192 which could have utility in

risk stratification. Additional epidemiological insights of rele-

vance to heart failure include observations that diabetes is asso-

ciated with subclinical evidence of myocardial injury manifested

by troponin leak and subtle changes in cardiac structure,193–195

which predict the lifetime risk of heart failure, CVD, and all-cause

mortality. Moreover, the presence of or duration of diabetes am-

plifies the transition from preclinical heart failure to overt dis-

ease.196,197 The clinical efficacy of novel diabetes therapeutics

such as GLP-1RAs or SGLT2 inhibitors in reducing CVD is likely

mediated by multiple and synergistic effects on diverse comor-

bidities, the individual effects of which are difficult to quantify.

Atherosclerosis

Atherosclerosis a major driver of ASCVD, develops in the back-

ground of endothelial cell (EC) and vascular smooth muscle cell

(VSMC) dysfunction. These abnormalities are characterized by

increased homing of inflammatory cells such as monocytes

andmacrophages to ECs that increase their expression of adhe-

sionmolecules, including intercellular and vascular cell adhesion

molecule -1 (ICAM-1) and VCAM-1, respectively, in concert with

VSMC proliferation.198 Increased uptake of LDL cholesterol in
Figure 5. Systemic changes and mechanisms leading to increased ris
Systemic changes characterized by altered release of adipokines and increased re
hyperglycemia, and increased hepatic generation of pro-atherogenic lipoprotein
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vascular macrophages and VSMC contributes to endothelial

dysfunction and hypercholesterolemia activates bone marrow-

derived inflammatory monocytes via multiple mechanisms.

Once atheromatous lesions develop, there are feedforward

mechanisms that promote atherosclerotic plaque expansion,

necrosis, and rupture, precipitating vascular occlusion. Dia-

betes, which is characterized by endothelial dysfunction

including nitric oxide synthase (NOS3) dysfunction and NO defi-

ciency,199 amplifies all of these underlying pathophysiological

variables (Figure 5). A large body of evidence implicates diabetes

in activating myelopoiesis and inflammatory cell activation via

direct mechanisms in the bone marrow and cross talk between

adipose-derived macrophages via inflammatory cytokines

release including IL-1b.191,200 Activation of inflammatory cells

in diabetes is associated with cell-autonomous changes in

glucose and fatty acid metabolism.201,202 Aggressive lipid

lowering can lead to atheroma regression. Importantly, hypergly-

cemia and uncontrolled diabetes retard plaque regression

despite lipid lowering via multiple mechanisms, including persis-

tent myelopoiesis, monocytosis, neutrophilia, and persistence of

macrophages in the M1 (pro-inflammatory state) versus the M2

state that promotes plaque regression.203

Diabetes is also associated with increased risk of thrombosis,

due in part to endothelial dysfunction that accelerates the activa-

tion of procoagulant factors, whose generation by the liver and

adipose tissue is also augmented in diabetes and insulin-resis-

tant states (Figure 5).204 In addition, metabolic disturbances in

platelets have also been described, whereby increased glucose

metabolism in platelets correlate with increased platelet activa-

tion. Notably, genetic inhibition of platelet glucose transport or

metabolism protects animals from diabetes-related platelet

overactivation.205,206

Heart failure

Diabetes increases the risk of heart failure independently of

the increased risk of CAD.207,208 A large number of studies in

animal models have identified mechanisms that impair cardio-

myocyte and coronary microvascular function and have

been extensively reviewed.207–209 These mechanisms include

carbotoxicity (lipotoxicity and glucotoxicity), oxidative stress,

impaired mitochondrial bioenergetics, mitochondrial uncou-

pling, impaired myocardial excitation-contraction coupling,

and activation of pro-fibrotic pathways (Figure 5). Additionally,

activation of hypertrophic signaling pathways results in part
k of cardiovascular disease in diabetes
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from selective IR, whereby hyperinsulinemia activates hypertro-

phic and lipotoxic pathways. Recent studies in humans who

have received heart transplantations have corroborated these

findings.210,211 By leveraging the cardiac biopsy samples ob-

tained post-transplantation, independent groups have now

confirmed that within months of cardiac transplantation, normal

donor hearts that were transplanted into recipients who

develop diabetes exhibit evidence of triglyceride overload and

accumulation of toxic lipids such as ceramides. In addition,

there is clear evidence of mitochondrial respiratory insuffi-

ciency, oxidative stress, and inflammation. Intriguingly, individ-

uals who were treated with metformin exhibited attenuation

of these changes.210 To underscore how rapidly the heart

maladapts to more subtle changes in the metabolic milieu,

mitochondrial oxidative defects were also observed in trans-

plant recipients with prediabetes relative to those who re-

mained non-diabetic.211 Thus, the myocardium in the context

of dysregulated glucose metabolism can be likened to a canary

in a coal mine. These changes develop rapidly and set the

stage for long-term myocardial maladaptation to additional

stressors such as ischemia or hypertrophy.188

Impaired angiogenesis

Diabetes is characterized by impaired angiogenic signaling that

may contribute to the increased risk of peripheral vascular dis-

ease and critical limb ischemia.212 As extensively reviewed pre-

viously, diabetes reduces the expression of multiple pro-angio-

genic factors and induces perturbations in signaling pathways

that promote angiogenesis, including vascular endothelial

growth factor (VEGF) resistance, impaired nitric oxide signaling,

reduced levels of angiogenic stem cell (SC) precursors, and peri-

cyte loss.212 More recent studies have focused on dysregulation

of microRNAs and other non-coding RNAs, including long non-

coding RNAs, whose levels are altered by the diabetic milieu

and are known to regulate pro and antiangiogenic pathways.213

Taken together, a large body of work has identified how dia-

betes adversely impacts multiple cellular populations that

maintain cardiovascular health and resilience (Figure 5). While

hyperglycemia represents an important pathophysiological

mechanism, it is just one player in the orchestra of other factors,

including increased inflammation, dysregulated lipid meta-

bolism, and impairment of regenerative pathways that conspire

to impair cardiovascular resilience. Therapeutic strategies,

including lifestyle, weight loss surgery, and drugs, which will

have the greatest impact on reversing the persistent CVD risk

in diabetes are likely to be those that simultaneously target mul-

tiple upstream metabolic mechanisms beyond glycemia or

target more than one downstream pathogenic abnormality. Ex-

isting diabetes therapies and their impact on CVD reduction

are discussed in the section on recent therapeutic advances

in T2D.

DKD
Diabetic kidney disease (DKD) is characterized by albuminuria

and a reduced estimated glomerular filtration rate (eGFR).214

Roughly 40%of patients with diabetes will develop DKD,making

DKD a leading cause of end-stage kidney disease. Despite the

decline in CVD in the general population and to a certain extent

in people with diabetes,215 the prevalence of DKD has only mini-
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mally decreased. This highlights the urgent need to better under-

stand its pathophysiology and to identify new therapies that can

slow its progression.

Renal vascular dysfunction and DKD

The kidney has a unique circulation characterized by a double

capillary system. The incoming renal artery (afferent) gives rise

to the glomerular capillaries. The outgoing vessel from the

glomerulus (efferent artery), still carrying arterial blood then be-

comes the peritubular capillary system.216 One of the earliest

features of DKD is glomerular hyperfiltration.217 Systemic hyper-

glycemia can cause increased proximal tubule (PT) sodium reab-

sorption (as glucose is transported into tubular cells by a so-

dium-coupled transport mechanism), resulting in reduced

sodium and chloride delivery to the macula densa, which is

falsely sensed as reduced circulating volume. Consequently,

the glomerulus responds by increasing the filtration rate (hyper-

filtration) by an angiotensin-mediated constriction of the glomer-

ular efferent artery. This mechanism is described as tubuloglo-

merular feedback.

DKD is a primary microvascular complication of diabetes. ECs

express the insulin receptor and the insulin responsive glucose

transporters. Hyperinsulinemia and hyperglycemia increases

flux into the polyol pathway, increasing reactive oxygen species

production and inducing the expression of adhesion mole-

cules.218,219 In the kidney, the glycocalyx network surrounding

glomerular ECs plays a pivotal role, and the loss of this glycoca-

lyx correlates with albuminuria.220 Impaired angiogenesis is

another crucial aspect of diabetic complications. Within the

glomerulus, podocytes serve as an important source of

VEGFA, which is essential for the health of glomerular ECs.221

Animal studies indicate that the initial stage of DKD is character-

ized by increased glomerular VEGF levels, but in the later stages,

VEGF levels are lower, contributing to the loss of glomerular and

peritubular capillaries.222 Both VEGF and insulin regulate cellular

Akt levels and downstream endothelial nitic oxide synthase.

Nitric oxide, an important regulator of vascular smooth muscle

tone, also modulates the contractility of mesangial cells in the

glomerulus.214,223

Glomerular and tubule epithelial cells in DKD

Podocytes are crucial for the formation of the filtration barrier in

the glomerulus. Podocyte metabolism is altered early in the

course of diabetes, and metabolic shifts, particularly increased

oxidative stress, exacerbate podocyte dysfunction.224 In addi-

tion, changes in podocyte cytoarchitecture and thickening of

the glomerular basement membrane occur early. Reorganization

of the cellular actin and myosin by RhoA/Rac1 pathways is an

important cause of foot process effacement, which correlates

strongly with the level of albuminuria.225 Additionally, podocyte

enlargement develops, mostly on the basis of altered mTOR

and growth factor signaling.226 Later on, loss of glomerular po-

docytes due to death or detachment represent an irreversible

step in disease progression and development of glomerulo-

sclerosis.224

While DKD has been primarily viewed as a classic glomerular

disease, changes in PT cells are increasingly recognized as pri-

mary disease-driving mechanisms. Genes identified by eGFR

GWASs show a strong enrichment for PT-specific expression.227

PT cells are highly metabolically active and are responsible for
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absorbing nearly 100 liters of water and a kilogram of salt daily.

This metabolic burden is increased in patients with hyperglyce-

mia and hyperfiltration. Glucose reabsorption in the PT is mostly

sodium coupled via the sodium-glucose cotransporters (SGLT1

andSGLT2). Initially, PT cell size and number increase and corre-

late with hyperfiltration. This increased metabolic demand

causes relative hypoxia and ATP depletion in PT cells, leading

to activation of hypoxia and AMPK pathways. In later stages, de-

fects in fatty acid oxidation secondary to repression of key tran-

scription factors such as estrogen-related receptor alpha

(ESRRA) and peroxisome-proliferator receptor alpha (PPARA)

develop, leading to energy depletion and loss of cell identity of

PT cells, resulting in declining GFR. When cellular andmitochon-

drial damage is not repaired, damaged mitochondria release

mitochondrial RNA and DNA molecules that activate inflamma-

tory pathways.228,229 Mitochondrial nucleotides are recognized

by cytosolic pattern recognition pathways such as cyclic GMP-

AMP synthase (cGAS), stimulator of interferon genes (STING),

retinoic acid-inducible gene 1 (RIG-I), and the Toll-like receptor

(TLR) system, leading to the activation of transcription factors

like nuclear factor kB (NF-kB) and interferon regulatory transcrip-

tion factor (IRF) that induce cytokine gene expression. These

injured or profibrotic tubule cells attract macrophages, lympho-

cytes, and fibroblasts promoting tissue fibrosis leading to irre-

versible progressive kidney damage.

Genetics, epigenetics, and metabolomics

Important contributions of genetics to DKD were suggested by

the familial aggregation of the disease. Large genetic consortia

including genetics of nephropathy, international effort (GENIE)

identified genetic variations in the COL4A3 gene, which was

found to be protective against DKD.230 Although comprehensive

eGFR GWAS investigations have identified numerous loci asso-

ciated with eGFR, subsequent analyses have shownminimal dif-

ferences in the genetic architecture of eGFR in diabetic and non-

diabetic cohorts.227

The intriguing ‘‘metabolic memory’’ phenomenon, where his-

torical glycemic control casts shadows on subsequent kidney

disease susceptibility, has brought the role of epigenetics in

DKD to the forefront.231 Several underlying mechanisms have

been posited, with DNA methylation featuring prominently. Re-

sults from the Diabetes Control and Complication Trial (DCCT)

have emphasized the role of methylation variations in this enig-

matic metabolic memory effect. Methylation differences in blood

cells, particularly within the thioredoxin interacting protein

(TXNIP) locus, are correlated with DKD trajectory.232 Moreover,

the methylation landscape in human kidney specimens reveals

significant differences in healthy and DKD kidneys, supporting

the potential role of epigenetics in DKD progression.233,234 His-

tone modifications, another facet of epigenetics, involve pro-

cesses like acetylation andmethylation, which govern chromatin

accessibility and the transcriptional readiness of DNA. Patterns

of histone modifications, notably H3K9 and H3K4, were strongly

associated with DKD in the DCCT cohort.235 It is noteworthy that

multiple epigenome-modifying enzymes ranging from histone

deacetylases (HDACs) to Sirtuins, are now implicated in the

development DKD, fibrosis, inflammation, and cellular injury.

Recent single-cell studies of DKD and control human kidneys

detected cell-specific epigenetic changes that impact chromatin
accessibility in DKD.236 These shifts suggest a potential pre-

programming of kidney cells, modulating their responsiveness

to external influences, thereby potentially dictating the course

of DKD.236

Various lipid species have been identified as biomarkers or

causal factors in DKD. Circulating acylcarnitines, which are inter-

mediates in lipid metabolism linked to IR, inversely correlate with

eGFR.237 Analysis of blood samples from CKD patients revealed

an abundance of specific fatty acids, with b-oxidation efficiency

markers decreasing as CKD progressed. Phospholipid species

also undergo dynamic changes, with associations drawn be-

tween phosphatidylcholine and eGFR decline. Intriguingly, indi-

viduals with DKD exhibited increased urinary lysophosphatidyl-

choline levels as kidney function declined. The role of different

metabolites in DKD development remains poorly understood.

Most importantly, it is difficult to distinguish between changes

that cause DKD and those observed as a consequence of the

disease. The contribution of novel therapeutics to DKD preven-

tion will be discussed in the section on recent therapeutic ad-

vances in T2D.

ADVANCES IN DIAGNOSIS AND TREATMENT OF
DIABETES AND ITS COMPLICATIONS

This section will review recent advances in the prevention and

treatment of T1D, discuss the promise and limitations of preci-

sion medicine and personalized medicine approaches for man-

aging T2D, and summarize current outcomes data and pros-

pects for novel therapeutics for T2DM with important effects

beyond achievement of glycemic control.

Advances in prevention and therapies for T1D
For decades, clinical trial interventions were performed at the

onset of stage 3 T1D, when overt hyperglycemia is already

present. While these efforts identified a handful of immunomod-

ulatory therapies capable of preserving C-peptide in early dis-

ease, none of these therapies led to insulin independence or pro-

gressed to a regulatory approval.30,238 An important lesson

gleaned from these efforts was that interventions initiated after

stage 3 T1D onset were likely too late in disease evolution to

significantly modify outcomes. Thus, the new disease staging

system filled an important void by providing a conceptual and

regulatory framework for interventions aimed at earlier disease

time points.

In 2019, Herold and colleagues reported results from a

groundbreaking study performed as part of the NIH-funded

T1D TrialNet network. This study tested the impact of a single

14-day course of the Fc receptor-nonbinding anti-CD3 mono-

clonal antibody, teplizumab, on progression from stage 2 to

stage 3 T1D. When the first results were reported, teplizumab re-

sulted in a median delay of stage 3 T1D onset of 24 months.239

An updated analysis in 2021 showed continued extension of

this median delay to approximately 32.5 months.240 Based on

these results, the US Food and Drug Administration (FDA)

approved teplizumab (Tzield) as the first disease-modifying ther-

apy in T1D. While this approval represents a paradigm-shifting

event in the history of T1D, it has created an urgency to rapidly

establish strategies to identify at-risk autoantibody positive
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individuals. In the absence of unified guidelines, a number of ap-

proaches are being tested, including cross-sectional autoanti-

body screening either alone or in combination with the assess-

ment of polygenic risk scores.241,242 Although additional

studies are needed to understand the efficacy, acceptability,

and risks of these strategies within the general population, the

approval of teplizumab codifies the concept that T1D begins

with the development of multiple autoantibodies and provides

the groundwork for additional drugs to progress to registration

trials.

For those individuals who have already progressed to stage 3

T1D, options for disease management have improved dramati-

cally since the discovery of insulin. Advancements in diabetes

management include the development of insulins with opti-

mized pharmacokinetics, algorithm-driven subcutaneous insulin

pumps, continuous glucose monitoring, and improved tools for

self-management.30,243 While advancement in diabetes technol-

ogy have improved quality of life and metabolic outcomes for in-

dividuals with T1D, living with T1D remains burdensome.26,27,244

Thus, restoration of endogenous beta cell function via cell

replacement therapy represents the next potentially paradigm-

shifting event for those affected by T1D.

In this regard, beta cell replacement via pancreas or islet trans-

plantation from cadaveric donors has shown promise. The

development of the Edmonton Protocol in 2000 demonstrated

that infusion of donor islets into the portal vein can restore

glucose homeostasis and result in transient insulin indepen-

dence for individuals with T1D.245 Subsequent studies estab-

lished that beta cell replacement is feasible and beneficial, espe-

cially for those who suffer from life threatening hypoglycemia,246

and in 2023, the FDA approved donor islets in a preparation

named donislecel (Lantidra) for adults who are unable to achieve

hemoglobin A1c targets due to severe hypoglycemia.247 This

approval represents the first cell-based therapy for the treatment

of T1D; however, there are important limitations of islet trans-

plantation, including limited donor supply, the need for lifelong

immunosuppression, and waning efficacy of the graft over time.

In vivo differentiation of SCs into beta cells has the potential to

avoid several issues associated with islet transplantation by al-

lowing for the generation of an unlimited supply of standardized

and well-characterized insulin-producing beta cells from human

pluripotent SCs.248 In a trial begun in 2014 (NCT02239354) and

refined in 2017 (NCT03163511), ViaCyte (now acquired by Vertex

Pharmaceuticals) tested the efficacy of encapsulated SC-

derived endoderm cells (PEC-01) in individuals with T1D. Initial

results showed that trial participants gained glucose-responsive

C-peptide production within 6–9 months post-transplantation.

Evaluation of grafted cells showed that the SC-derived endo-

derm cells differentiated into a variety of endocrine cells; howev-

er, there was marked heterogeneity between patients.249,250

Several groups have now developed protocols to allow for

in vitro differentiation of SCs into functional insulin-producing

cells rather than progenitors.251–253 Transplantation of these

SC-islets into diabetic mice251–253 and non-human pri-

mates254,255 improved glycemic control, suggesting that this

method of beta cell replacement could have efficacy in humans.

In an ongoing clinical trial begun in 2021 (NCT04786262), Vertex

Pharmaceuticals treated individuals with T1D using their SC-islet
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product, VX-880. Although the results of this trial have not yet

undergone peer review, exciting initial reports show that trans-

plantation of SC-islets leads to islet cell engraftment, glucose-

responsive insulin secretion, improved glycemic control, and

reduced or eliminated the need for exogenous insulin.256

The VX-880 trial was voluntarily paused early in 2024 pending

scrutiny of 2 unexplained deaths necessitating independent re-

view of safety issues (https://investors.vrtx.com/news-releases/

news-release-details/vertex-provides-pipeline-and-business-

updates-advance-upcoming). In addition, a clinical trial testing

the efficacy of VX-246, the encapsulated version of VX-880 cells,

has been initiated (NCT05791201).

The last several decades have seen tremendous advances in

the ability to diagnose, manage, treat, and even prevent T1D.

In the next 50 years of diabetes research, we expect to see

increased utilization and advancement in immunomodulatory

and cell-based therapies for the treatment and prevention of

T1D. Table 1 summarizes a framework for advancing therapeutic

development in relation to the stage of T1D.

Precision tools for diabetes subclassifications and
implications for diverse populations
In the last 20 years, there has been a transition in the epidemi-

ology of diabetes.3 While T2D incidence continues to rise glob-

ally, the presentation is now occurring at earlier ages, and the

burden of the disease rests in low- and middle-income countries

(LMIC) with an estimated 4 out of 5 people living with T2D from

these regions.3 The study of T2D across ancestry groups has re-

vealed considerable disease heterogeneity. For example,

ketosis-prone T2D in African-Caribbean people,257 the relatively

lean Asian T2D phenotype258 and higher risk for T2D in south

Asian individuals relative to people of white ancestry.259 Coupled

with this recognition has been the analysis of carefully curated

longitudinal population studies in people with T2D from Euro-

pean and other ancestries, which have revealed significant dis-

ease heterogeneity at presentation that can be linked to out-

comes such as DKD or the need for insulin treatment.260 This

heterogeneity has catalyzed precision medicine approaches in

diabetes261 to leverage better outcomes according to sub-

phenotype with the aim of tailoring diagnostics or therapeutics

to subgroups of populations sharing similar characteristics.

The focus on precision medicine approaches in T2D is

anchored in the success of monogenic diabetes as an exemplar,

which has proven that identification of the specific molecular

mechanisms underpinning diabetes can lead to precise diabetes

treatment. For example, mutations in the glucokinase gene

require no medical treatment as affected individuals demon-

strate no significant increase in lifetime risk of microvascular or

macrovascular complications despite lifelong fasting hypergly-

cemia,262 whereas mutations in the transcription factor gene

HNF1A can be managed with low-dose sulfonylurea therapy,263

to achieve superior glycemic control compared with standard

care.264 However, it is not just target-based therapeutics that

makes monogenic diabetes a successful front-runner in the dia-

betes precision medicine space. The implementation of clinical

pathways to enable genetic diagnosis in people with suspected

monogenic diabetes has demonstrated that patient stratification

through use of biomarker and clinical data and provision of

https://investors.vrtx.com/news-releases/news-release-details/vertex-provides-pipeline-and-business-updates-advance-upcoming
https://investors.vrtx.com/news-releases/news-release-details/vertex-provides-pipeline-and-business-updates-advance-upcoming
https://investors.vrtx.com/news-releases/news-release-details/vertex-provides-pipeline-and-business-updates-advance-upcoming


Table 1. Summary of challenges and opportunities in preventing and treating type 1 diabetes

Pre-stage 1 Stage 1 Stage 2 Stage 3

Major challenges Major challenges Major challenges Major challenges

Identifying individuals at risk of

developing T1D through general

population screening

developing safe and effective

disease-modifying therapies

for T1D prevention/delay

developing safe and effective

disease-modifying therapies

for T1D prevention/delay

optimizing glycemic control

Data-driven approaches to

rescreening and follow-up

N/A N/A minimizing hypoglycemia

Understanding the acceptability

of screening in unaffected

populations

N/A N/A prevention of complications

N/A N/A improving life expectancy

Opportunities Opportunities Opportunities Opportunities

Optimizing genetic risk

assessment across

diverse populations

precision approaches for

disease-modification

precision approaches for

disease-modification

improvements in insulins,

insulin delivery, and

glucose monitoring

Develop optimized and

cost-effective

protocols for longitudinal

monitoring of antibody status

biomarker development to

guide therapeutic selection,

timing of interventions or redosing

biomarker development to

guide therapeutic selection,

timing of interventions or redosing

non-insulin therapies to

reduce risk of complications

therapies that address immune

activation and b cell health

therapies that address immune

activation and b cell health

b cell replacement with islet

transplantation or

stem-cell-derived b cells

N/A N/A durable remission or disease

prevention with disease-

modifying therapies

Early detection of individuals at high risk for developing T1D may enable earlier use of disease-modifying therapies. Once T1D develops, insulin treat-

ment is required. Advances inmodified insulin analogs, integrated insulin delivery, and glucosemonitoring technologies have improved glycemic man-

agement. Beta cell replacement therapy with stem-cell-derived islets may offer the hope of lasting cure.
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DNA-based diagnostics can be integrated into clinical care

across different health systems. This advance illustrates how

‘‘omics’’ or complex datasets that may be necessary for preci-

sion medicine could be integrated into real-world clinics rather

than merely being a fanciful future prospect.

Precision medicine has been defined as an approach that tai-

lors diagnostics or therapeutics to subgroups of populations

sharing similar characteristics, thereby improving accuracy in

medical decisions and health recommendations.261 While preci-

sion medicine and personalized medicine are often used inter-

changeably, the latter extends the definition by incorporating a

subjective approach that customizes treatment to align with an

individual’s preferences, circumstances, and capabilities.265

Precision tools are the instruments with which themore nuanced

approach (based on objective data) can be taken. For diabetes

subclassification, these tools can be considered in terms of

complexity.266 At a rudimentary level, simple clinical features

or other objective data have been used in isolation to identify

subpopulations with similar characteristics. For example,

younger age at onset of T2D is associated with a shortened life

expectancy267 and a rapid progression to cardiovascular com-

plications. Earlier age at diagnosis is often observed in East

Asian and South Asian populations and has been associated

with worse beta cell function at diagnosis, which appears in

part to be linked to genotype.268 However, identifying subpopu-

lations sharing similar characteristics does not itself fulfill the

central tenet of precision medicine; tailored treatment is also

needed to make the subclassification meaningful.261 Such an

approach has been exemplified in the first randomized study
(with crossover) of precision treatment for T2D.269 The study

demonstrated that using dichotomous BMI or eGFR cut-offs as

stratification tools predicted greater reduction in HbA1c in peo-

ple with T2D. Participants with obesity (BMI > 30 kg/m2) ex-

hibited improved glycemic outcomes when treated with pioglita-

zone compared with sitagliptin.269 Additionally, those with lower

eGFR (60–90 ml/min/1.73 m2) demonstrated a greater reduction

in HbA1c levels in response to sitagliptin versus canagliflozin. A

similar study conducted in New Zealand showed that the pres-

ence of obesity and/or hypertriglyceridemia predicted a greater

reduction in HbA1c with pioglitazone than vildagliptin.270

A separate approach to diabetes subclassifications has

stemmed from the integration of several clinical and biomarker

variables and/or genetic data using machine learning or

complex mathematical algorithms.266 A clustering approach to

classification was pioneered in a study that used HbA1c, BMI,

age-at-diagnosis, GAD-65 antibody positivity, HOMA-2IR, and

HOMA-B to identify five distinct subgroups of diabetes. These

groupswere differently associated with a variety of outcomes.260

For example, people in the cluster with severe IR (characterized

by higher BMI and highest HOMA2-IR) were far more likely to

progress to CKD despite similar treatment and HbA1c relative

to the mild-obesity and mild-age related clusters. The clustering

approach has certainly taken hold, with over 22 studies repli-

cating those initial subclassifications in diverse study popula-

tions that also associate with similar clusters.266 Of course, the

clusters identified simply reflect the input variables, and other

studies have shown different clusters by incorporation of

additional variables.271 The clusters identified may not be
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transethnic, however, and may perform variably across different

ancestries. For example, a study in India identified two novel

clusters that likely reflect differences in pathophysiology in In-

dian Asians with T2D that are characterized by insulin deficiency

and IR manifesting without obesity, relative to the white Euro-

pean Scandinavian population in the original study.272

Another approach to subclassification that is anchored in ge-

netic etiology has been clustering of genetic variants and asso-

ciated traits, which most recently has used Bayesian non-nega-

tive matrix factorization to identify 10 distinct genetic clusters

that associate with a variety of clinical outcomes.273 The field

is advancing rapidly with multiple machine learning algorithms

that also predict treatment failure through the subgroups identi-

fied. For example, in a recent study using non-linear transforma-

tion of nine clinical variables, certain subgroups associatedmore

with treatment failure over time, with replication in external data-

sets.274 While much research is focused on stratifying T2D, the

field would benefit from standardization in approaches, with

some consensus over what constitutes a useful clinical

outcome, and the optimal study designs to prove efficacy of

the precision medicine approach over standard care.

Although the field of precision diabetes is advancing rapidly,

major gaps in the evidence-base remain.261,265 Initially, for broad

adoption to occur, a fundamental requirementmust bemet,which

is to demonstrate that the benefits of the precision medicine

approach are clinically superior to standard care and are cost-

effective and implementable. This evidence will need to come

from randomized trials. It is important to ensure that appropriate

outcomes are used for evaluation of utility. A systematic review

of the literature to examine all studies that attempt to subclassify

T2D revealed considerable heterogeneity in study exposures and

outcomes and with mostly poor Grading of Recommendations,

Assessment, Development, and Evaluation (GRADE) quality.266

More robust studies are starting to emerge, most recently a ran-

domized study assessing the response to a GLP-1RA versus an

SGLT-2 inhibitor in people assigned to two different T2D clus-

ters.275 Future studies should scrutinize the precision medicine

approach against standard care and consider clinically relevant

outcomes, feasible implementation of usable technology, and

evaluating appropriate use of therapeutic agents.261,265

Precision medicine and health equity

It remains to be seen if any successful precision medicine ap-

proaches for T2D can be implemented at scale and in all

resource settings. Even monogenic diabetes testing, the poster

child, is not available universally. The issue of resource is one

that is frequently cited by opponents of precision medicine,

which is often perceived to be costly276 and leads many to

believe bigger gains are to be made by delivering current ‘‘less

precise’’ models of care with equality and reach. Indeed, if there

are potential cost-savings from precisely classifying diabetes at

diagnosis or choosing treatments more effectively, these are

currently challenging to quantify because they are likely to be

downstream in the clinical pathway and/or life course of the per-

son living with diabetes.

The cost argument is compounded by statistics showing the

burden of T2D now lies in LMIC regions.3 Is it reasonable to

expect precision medicine for diabetes in regions where essen-

tial medication pipelines are not secure, let alone the provision
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of sophisticated diagnostics? Certainly, if wedded to the notion

of precision medicine involving complex ‘‘omic diagnostics’’

and data analytics with end-to-end implementation, then it

seems unlikely that such approaches would work in LMIC re-

gions.276 It is evident that more simple approaches to subclas-

sification, for example, BMI cut-offs (and other routinely avail-

able measures) or decision support tools to help stratify risk

and/or select treatments, may be more feasible to implement

in such regions. However, there is huge potential to innovate

in delivery of precision approaches in LMIC populations, and

if precision medicine is an approach that yields lower error,

then arguably there is much to gain in these regions where

infrastructure to diagnose and treat communicable diseases

already exists and use of point-of-care diagnostics has had

success.276

Even in high-income countries, there is significant health

inequality and variation in diabetes care, often affecting people

from socioeconomically deprived backgrounds, those from mi-

nority ethnic groups, and other minoritized groups, e.g., the

homeless or those with mental illness. If implementation of pre-

cision medicine is not planned and considered carefully, it has

the potential to widen inequalities and provide access to only

those who can afford it in countries where there is not universal

healthcare. It behooves all involved to consider these risks.

Impact of population diversity

Most precisionmedicine studies to date, be they relating to diag-

nosis, treatment, or complications, have occurred in predomi-

nantly white European populations, and this represents a

significant limitation of the field.261 Greater ethnic diversity in

all aspects of T2D research is needed to ensure tailored solutions

are derived in representative populations to leverage or address

the significant disease heterogeneity reflecting differences in un-

derlying pathogenesis. An approach that takes a precision med-

icine solution derived in one ancestry and maps it to another is

unlikely to yield success, even if the imprecision of such an

approach is deemed acceptable. Moreover, this approach is

challenged by studies revealing that T2D clusters are different

in some ethnic groups.272

Lack of diversity in GWAS is also problematic, and where

GWAS have been performed in diverse ancestries, it is often

for a specific disease with data on associated traits lacking.277

Often the same limited non-European cohorts are utilized recur-

rently in consortia leading to potential biases and over-sampling.

While some genetic risk scores (GRSs) such as the T1D GRSs,

have shown portability across ancestry groups,278 there are

many GRSs that have not shown good portability across ances-

tries. The lack of diverse genomic data has led to alternative ap-

proaches that fine-tune existing scores for a particular popula-

tion by modifying effect sizes279 or by creating trans-ancestry

scores.9 While these approaches make the best of what is avail-

able, both alternatives risk overlooking potential novel variants

and rare disease variants in understudied populations. Even in

drug trials for T2D, there is considerable under-enrollment of mi-

nority populations or if they are enrolled, the numbers are not

large enough to study.280 In a survey of over 400 randomized

controlled trials (RCTs) of drugs for T2D, diversity improved

over the 10 years studied but remained well below the expected

proportional representation of multiple minority ethnic groups.
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Not only ancestry but also age, gender, and other protected

characteristics should be considered in proposed precision med-

icine studies. If the potential of precision medicine is to be fully

realized, it is also important that precision medicine solutions

are derived in specific populations without a priori hypotheses

and with consideration for implementation in all resource settings.

Recent therapeutic advances in T2D
Here, we provide an overview of themajor advances in therapeu-

tics for T2D, emphasizing the actions of newmedicines to reduce

glucose while preventing weight gain and improving cardiorenal

outcomes. Three classes of glucose-lowering medicines were

introduced for the treatment T2D in the last 20 years, starting

with GLP-1RAs, followed by dipeptidylpeptidase (DPP)-4 inhibi-

tors, and SGLT-2 inhibitors. These new medicines enabled con-

trol of glucose without weight gain and with a very low risk of hy-

poglycemia. DPP-4 inhibitors have few AEs, are generally

administered as once-daily tablets, can easily be combined

with metformin, and are well suited for treatment of individuals

not requiring simultaneous reduction of cardiovascular risk. In

contrast, SGLT-2 inhibitors, also administered as a once-daily

tablet, reduce rates of hospitalization for heart failure and CKD

in people with or without T2D. As a result, SGLT2 inhibitors are

indicated for reduction of CVD and CKD in people with T2D.

Importantly, although the glucose-lowering efficacy of SGLT2 in-

hibitors is diminished in people with a reduced eGFR < 60 mL/

min/1.73 m2, these agents still exert nephroprotective effects

in people with or without T2D, even when administered to indi-

viduals with an eGFR as low as 20–25 mL/min/1.73 m2.281 The

dual sodium-glucose cotransporter-1 and -2 inhibitor sotagliflo-

zin does not consistently reduce rates of renal outcomes in peo-

ple with pre-existing renal impairment and T1D or T2D, although

this result might have related to study design. However, sotagli-

flozin rapidly reduced rates of re-hospitalization for heart failure

and cardiovascular death in subjects with T2D with a history of

recent worsening heart failure.282 The SGLT2 inhibitor class of

medicine is now established for cardiorenal protection in people

with and without T2D, with less extensive innovation expected in

these classes beyond several ongoing trials exploring possible

new indications. SGLT2 inhibitors and sotagliflozin have been

extensively studied in people with T1D, and ongoing trials are

exploring the extent to which the benefitsmay be safely captured

while mitigating the risks by using new technologies to identify

and forestall the risk of ketoacidosis.

GLP-1 was originally identified as an insulin-stimulating hor-

mone, with subsequent actions encompassing reduction of

glucagon secretion and gastric emptying, supporting its devel-

opment for the treatment of T2D.48 Subsequent preclinical

studies in 1996 identified that icv administration of GLP-1 in-

hibited food intake, leading to weight loss. Exenatide, a naturally

occurring GLP-1RA isolated from the venom of the lizard Helo-

derma suspectum, was the first GLP-1RA approved for the treat-

ment of T2D in 2005. Exenatide was first developed as a twice-

daily injectable medicine, followed a few years later by the

introduction of lixisenatide, a once-daily short-acting GLP-

1RA, and liraglutide, an acylated long-acting human GLP-1RA

suitable for once-daily administration.48 The AEs associated

with GLP-1RAs are predominantly gastrointestinal (GI), princi-
pally nausea, vomiting, diarrhea, constipation, and gallstones

or gallbladder inflammation.48 These AEs are most notable at

the time of drug initiation and dose up-titration. Persistent GI

AEs compromising food and water intake may lead to dehydra-

tion and, rarely, acute kidney injury, highlighting the importance

of maintaining adequate hydration. Gallbladder events including

cholecystitis and cholelithiasis have been reported with GLP-

1RAs. The incidence of the GI AEs wanes over time in the major-

ity of subjects; however, in some individuals, the AEs persist,

necessitating treatment discontinuation.

Exenatide, once weekly, was formulated by incorporating syn-

thetic exenatide into microspheres and injected subcutaneously

onceaweek, enablingsustaineddeliveryof exenatide for the treat-

ment of T2D.283 It was approved as the world’s first once-weekly

medicine for people with T2D in 2012. Dulaglutide, a once-weekly

GLP-1RA, containing a DPP-4-resistant GLP-1 peptide covalently

attached to a human IgG4-Fc heavy chain via a small peptide

linker,wasapproved for the treatmentofT2D in2014.Semaglutide

first developed as a small acylated peptide GLP-1RA suitable

for once-weekly administration was approved for T2D in 2017.

An oral once-daily version of semaglutide, co-formulated with

an absorption enhancer sodium N-(8-[2-hydroxybenzoyl]amino)

caprylate, enabling transcellular absorption of semaglutide across

the gastric mucosa284 was approved in 2019. The efficacy of oral

versus injectable semaglutide is proportional to the plasma levels

achieved, with somewhat greater bioavailability evident in women

and individuals with a lower BMI.284

Each iteration of novel GLP-1RAs has achieved greater effi-

cacy both for the reduction of HbA1c and, secondarily, for weight

loss. Observations of weight loss in people treated with GLP-

1RAs spurred the development of liraglutide, 3 mg once daily,

for the treatment of obesity, an indication approved in 2014. Sub-

sequent studies demonstrated even greater weight loss with

semaglutide 2.4 mg once weekly, which was approved in the

USA in 2021 for people with a BMI over 30, or over 27, with

one or more weight-related risk factors for CVD. The use of

GLP-1RAs for the treatment of T2D in people with risk factors

for or with established CVD was bolstered by results from a se-

ries of cardiovascular outcome trials, first reported in 2016.

Collectively, these studies demonstrated that sustained GLP-

1R activation reduces the rates of non-fatal myocardial infarc-

tion, stroke, and cardiovascular death, with an overall reduction

of�12% in all-cause mortality.285 Importantly, the cardioprotec-

tive benefit of GLP-1RAs is achieved in the presence or absence

of concomitant SGLT-2 inhibitor therapy,286 and the combina-

tion appears to confer an additive cardioprotective benefit,

consistent with their distinct mechanisms of action.

The SELECT trial extended the cardiovascular safety of once-

weekly semaglutide (2.4 mg) to people with overweight or

obesity and a history of CVD. A 20% reduction in the primary

composite endpoint of non-fatal MI, non-fatal stroke, and car-

diovascular death was observed in subjects randomized to sem-

aglutide.287 A cardiovascular benefit became evident within the

first several months, raising the possibility that some of the car-

diovascular benefit achieved with semaglutide in the SELECT

trial is independent of weight loss. In the STEP heart failure

with preserved ejection fraction (HFpEF) trial, once-weekly sem-

aglutide (2.4 mg) in patients with obesity and HFpEF improved
Cell 187, July 25, 2024 3807



Figure 6. Evolution of GLP-1-based thera-

peutics for the treatment of cardiometa-

bolic and neurodegenerative disorders
GLP-1RAs targeting the GLP-1 receptor (GLP1R)
alone or in combination with one or more addi-
tional metabolic peptides are being studied
beyond classical indications such as T2D or
obesity. The figure summarizes existing combi-
nation molecules that are being tested in a
variety of syndromes including heart failure, dia-
betes, obesity, CKD, MAFLD, and neurodegener-
ative syndromes. GIPRA, GIP receptor agonist;
GIPRAnt, GIP receptor antagonist; GCGRA,
glucagon receptor agonist; AMLNRA, amylin re-
ceptor agonist; GLP-1R, GLP-1 receptor; GIPR,
GIP receptor; GCGR, glucagon receptor; AMLNR,
amylin receptor; HFpEF, heart failure with pre-
served ejection fraction.

ll
Review
heart failure symptoms and walk test time in concert with weight

loss and reduction in CRP.288,289

DKD is strongly associated with andmight even explain a sub-

stantial proportion of diabetes-associated mortality. Significant

efforts have been focused on glycemic control to prevent dia-

betic complications. However, tight glycemic control alone is

insufficient to prevent DKD. GLP-1RAs reduced renal composite

endpoints in cardiovascular safety trials, driven by a reduction in

albumin excretion.285 Several recent outcome trials with pre-

specified renal endpoints have also revealed important bene-

fits290 of novel glucose-lowering agents. These agents correct

multiple defects observed in DKD. Renin angiotensin and aldo-

sterone system (RAAS) inhibitors reduce glomerular hyperfiltra-

tion291 by directly targeting the efferent glomerular artery.

SGLT2i by targeting glucose and sodium uptake of kidney PTs

reduce the metabolic demand on these cells.292,293 In addition

to improving tubule health, SGLT2i also reduce glomerular hy-

perfiltration and stress. Non-steroidal mineralocorticoid receptor

agonists not only reduce the salt reabsorption in principal cells

but also reduce inflammation and fibrosis. Finerenone reduced

rates of composite renal outcomes by 20% in people with T2D

in the FIDELIO study.294 Most recently GLP-1RAs have shown

efficacy in renal protection. GLP-1Rs are expressed at low levels

in renal VSMCs and pericytes in the kidney, although it remains

to be established if benefits are due to primary or secondary ef-

fects. FLOW a randomized, double-blind, parallel-group, multi-

national, phase 3b trial of participants with T2D was stopped

early due to the effectiveness of semaglutide to reduce progres-

sion of CKD exemplified by a 24% reduction in a composite of

major kidney disease events relative to placebo.295 Thus, the

therapeutic pillars for DKD therapy are expanding beyond the

classic inhibitors of the RAAS to include blockers of the SGLT2

transporter, non-steroidal mineralocorticoid receptor blockers,

and GLP-1RAs.

Efforts to improve upon the efficacy of GLP-1-based therapies

have favored the development of GLP-1-based multi-agonists,

either as unimolecular entities or as combination therapy using

a single delivery system (Figure 6). Tirzepatide is a GIP recep-

tor-GLP-1R co-agonist developed as a single acylated peptide

suitable for once-weekly administration that was approved for

the therapy of T2D in May of 2022 and for people with obesity

in November of 2023. Tirzepatide produces double-digit weight
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loss and substantial A1c reduction, to a greater extent than that

achieved with semaglutide in a head-to-head randomized trial of

people with T2D.296 The cardiovascular safety of tirzepatide in

T2D is being directly compared with dulaglutide in 13,299 people

enrolled in the SURPASS-CVOT trial.297 Eligibility criteria include

subjects with T2D and established ASCVD (a history of CAD,

stroke, or peripheral vascular disease). The composite primary

outcome is 3-point major adverse cardiovasclar events

(MACE). Randomization was also stratified by the use of

SGLT-2 inhibitors at trial entry. Recently, tirzepatide was re-

ported to significantly reduce obstructive sleep apnea in obese

patients, the majority of whom had prediabetes, in concert with

weight loss.298

Multiple GLP-1-based combination therapies are in late-stage

clinical development, with the promise of developing greater ef-

ficacy (better glucose control, greater weight loss) while preser-

ving the cardiovascular benefits evident to date for the class

(Figure 6). These include the long-acting amylin analog cagrilin-

tide in combination with once-weekly semaglutide,299 glucagon

receptor-GLP-1R co-agonists exemplified by survodutide,300 a

GIP receptor antagonist-GLP-1R agonist antibody, maritide,301

and the triple glucagon-GIP-GLP-1R multi-agonist, retatru-

tide.302 Moreover small-molecule orally available GLP-1R ago-

nists, such as danuglipron,303 orforglipron299,304 and the small-

molecule GLP-1RA ECC5004 and GSBR-1290, also exhibit

promise in the clinic, potentially enabling greater efficacy with a

once-daily tablet relative to the efficacy achievedwith once-daily

oral semaglutide. Higher doses of oral semaglutide, up to 50 mg

once daily, with a new absorption enhancer formulation, are also

beingexplored. Thisdoseand formulation achievegreaterweight

loss in people living with T2D305 and/or obesity306 and more

effective A1c reduction, relative to the currently approved 14mg

once-daily tablet. The extent to which these innovative new

GLP-1 medicines will meaningfully improve therapeutic out-

comes, with an acceptable safety profile, will require additional

scrutiny in larger and longer clinical trials. Mechanistically,

whether GLP-1 medicines produce glucoregulatory and anti-in-

flammatory benefits in humans in part through CNS circuits re-

mains to be determined.49 GLP-1RAs are also being studied in

phase 3 trials in people with peripheral artery disease, metabolic

liver disease, and neurodegenerative disorders, potentially

broadening their therapeutic utility beyond T2D and obesity.48
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Moreover, investigator-initiated studies are underway in diverse

conditions such as addiction-related behaviors, genetic forms

of obesity, polycystic ovary disease, and T1D (Figure 6). Hence,

the next decade will yield innovation in the form of new, more

convenient, and powerful GLP-1medicines, supported by an ex-

panding array of clinical indications buttressed by forthcoming

clinical trial data.
CONCLUDING REMARKS

As the diabetes pandemic has evolved, our understanding of

pathophysiology and approaches to treatment and prevention

has exponentially increased. Current knowledge sets the stage

for increased specificity in identifying markers that increase the

susceptibility for beta cell dysfunction, particularly in obeso-

genic environments. Our understanding of the role of the brain

in body weight regulation and novel secreted factors from adi-

pose tissue may enable refinement of approaches for treating

or preventing obesity. Increased understanding of the contribu-

tion of hepatic dysfunction to IR and increasing understanding

of metabolic dysfunction-associated liver disease represents

an important area for additional research to avert what could

become a growing epidemic of liver failure. Cardiovascular

and renal disease remain the major driver of mortality and

morbidity in diabetes. It is clear that the underlying pathophys-

iology is complex and involves multifactorial interactions be-

tween organ systems and changes in the systemic milieu.

The diabetes pandemic is driven by environmental and social

factors that exacerbate these mechanisms, and comprehen-

sive approaches to managing this pandemic must involve con-

siderations of these factors. Advances in therapy now raise the

hope of preventing or curing T1D and treating T2D in ways that

not only improve metabolic homeostasis but also concretely

reduce the risk and progression of cardiorenal disease. Finally,

as we understand and develop tools for discerning the under-

lying heterogeneity leading to diabetes and its complications,

the stage will be set for targeting therapies and prevention stra-

tegies to optimize their impact, in ways that will be broadly

applicable across diverse populations and availability of health

care resources.
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21. Rönn, T., Ofori, J.K., Perfilyev, A., Hamilton, A., Pircs, K., Eichelmann, F.,

Garcia-Calzon, S., Karagiannopoulos, A., Stenlund, H., Wendt, A., et al.

(2023). Genes with epigenetic alterations in human pancreatic islets

impact mitochondrial function, insulin secretion, and type 2 diabetes.

Nat. Commun. 14, 8040. https://doi.org/10.1038/s41467-023-43719-9.

22. Walker, J.T., Saunders, D.C., Rai, V., Chen, H.H., Orchard, P., Dai, C.,

Pettway, Y.D., Hopkirk, A.L., Reihsmann, C.V., Tao, Y., et al. (2023). Ge-

netic risk converges on regulatory networks mediating early type 2 dia-

betes. Nature 624, 621–629. https://doi.org/10.1038/s41586-023-

06693-2.

23. Dwivedi, O.P., Lehtovirta, M., Hastoy, B., Chandra, V., Krentz, N.A.J.,

Kleiner, S., Jain, D., Richard, A.M., Abaitua, F., Beer, N.L., et al. (2019).

Loss of ZnT8 function protects against diabetes by enhanced insulin

secretion. Nat. Genet. 51, 1596–1606. https://doi.org/10.1038/s41588-

019-0513-9.

24. Scott, R.A., Freitag, D.F., Li, L., Chu, A.Y., Surendran, P., Young, R.,
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tion in the Hypothalamus Increases Second-Phase Insulin Secretion in

Humans. Neuroendocrinology 110, 929–937. https://doi.org/10.1159/

000504551.

42. Heni, M. (2024). The insulin resistant brain: impact on whole-body meta-

bolism and body fat distribution. Diabetologia 67, 1181–1191. https://doi.

org/10.1007/s00125-024-06104-9.

43. Hummel, J., Benkendorff, C., Fritsche, L., Prystupa, K., Vosseler, A.,

Gancheva, S., Trenkamp, S., Birkenfeld, A.L., Preissl, H., Roden, M.,

et al. (2023). Brain insulin action on peripheral insulin sensitivity in women

depends on menstrual cycle phase. Nat. Metab. 5, 1475–1482. https://

doi.org/10.1038/s42255-023-00869-w.

44. Scarlett, J.M., Rojas, J.M., Matsen, M.E., Kaiyala, K.J., Stefanovski, D.,

Bergman, R.N., Nguyen, H.T., Dorfman, M.D., Lantier, L., Wasserman,

D.H., et al. (2016). Central injection of fibroblast growth factor 1 induces

sustained remission of diabetic hyperglycemia in rodents. Nat. Med. 22,

800–806. https://doi.org/10.1038/nm.4101.

45. Sun, H., Lin,W., Tang, Y., Tu, H., Chen, T., Zhou, J.,Wang, D., Xu, Q., Niu,

J., Dong, W., et al. (2023). Sustained remission of type 2 diabetes in ro-

dents by centrally administered fibroblast growth factor 4. Cell Metab.

35, 1022–1037.e6. https://doi.org/10.1016/j.cmet.2023.04.018.

46. Schur, E.A., Melhorn, S.J., Oh, S.K., Lacy, J.M., Berkseth, K.E., Guyenet,

S.J., Sonnen, J.A., Tyagi, V., Rosalynn, M., De Leon, B., et al. (2015).

Radiologic evidence that hypothalamic gliosis is associated with obesity

and insulin resistance in humans. Obesity (Silver Spring) 23, 2142–2148.

https://doi.org/10.1002/oby.21248.

47. Sewaybricker, L.E., Huang, A., Chandrasekaran, S., Melhorn, S.J., and

Schur, E.A. (2023). The Significance of Hypothalamic Inflammation and

Gliosis for the Pathogenesis of Obesity in Humans. Endocr. Rev. 44,

281–296. https://doi.org/10.1210/endrev/bnac023.
48. Drucker, D.J., and Holst, J.J. (2023). The expanding incretin universe:

from basic biology to clinical translation. Diabetologia 66, 1765–1779.

https://doi.org/10.1007/s00125-023-05906-7.

49. Wong, C.K., McLean, B.A., Baggio, L.L., Koehler, J.A., Hammoud, R.,

Rittig, N., Yabut, J.M., Seeley, R.J., Brown, T.J., and Drucker, D.J.

(2024). Central glucagon-like peptide 1 receptor activation inhibits Toll-

like receptor agonist-induced inflammation. Cell Metab. 36, 130–

143.e5. https://doi.org/10.1016/j.cmet.2023.11.009.

50. Kullmann, S., Hummel, J., Wagner, R., Dannecker, C., Vosseler, A., Frit-

sche, L., Veit, R., Kantartzis, K., Machann, J., Birkenfeld, A.L., et al.

(2022). Empagliflozin Improves Insulin Sensitivity of the Hypothalamus

in Humans With Prediabetes: A Randomized, Double-Blind, Placebo-

Controlled, Phase 2 Trial. Diabetes Care 45, 398–406. https://doi.org/

10.2337/dc21-1136.

51. Zhang, Q., Delessa, C.T., Augustin, R., Bakhti, M., Colldén, G., Drucker,

D.J., Feuchtinger, A., Caceres, C.G., Grandl, G., Harger, A., et al. (2021).

The glucose-dependent insulinotropic polypeptide (GIP) regulates body

weight and food intake via CNS-GIPR signaling. Cell Metab. 33, 833–

844.e5. https://doi.org/10.1016/j.cmet.2021.01.015.

52. Frison, E., Proust-Lima, C., Mangin, J.F., Habert, M.O., Bombois, S.,

Ousset, P.J., Pasquier, F., Hanon, O., Paquet, C., Gabelle, A., et al.

(2021). Diabetes Mellitus and Cognition: Pathway Analysis in the

MEMENTO Cohort. Neurology 97, e836–e848. https://doi.org/10.1212/

WNL.0000000000012440.
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260. Ahlqvist, E., Storm,P., Käräjämäki, A.,Martinell,M., Dorkhan,M., Carlsson,

A., Vikman, P., Prasad, R.B., Aly, D.M., Almgren, P., et al. (2018). Novel

subgroups of adult-onset diabetes and their association with outcomes:

https://doi.org/10.1038/s41467-019-10378-8
https://doi.org/10.1038/s41467-019-10378-8
https://doi.org/10.1172/jci.insight.128886
https://doi.org/10.1172/jci.insight.128886
https://doi.org/10.1073/pnas.0803623105
https://doi.org/10.1073/pnas.0803623105
https://doi.org/10.1038/s41467-022-32972-z
https://doi.org/10.1038/s41467-022-32972-z
https://doi.org/10.1155/2018/1864865
https://doi.org/10.2337/db13-0236
https://doi.org/10.1056/NEJMoa1902226
https://doi.org/10.1056/NEJMoa1902226
https://doi.org/10.1126/scitranslmed.abc8980
https://doi.org/10.1126/scitranslmed.abc8980
https://doi.org/10.1038/s41591-020-0930-4
https://doi.org/10.1038/s41591-020-0930-4
https://doi.org/10.2337/dbi20-0054
https://doi.org/10.2337/dbi20-0054
https://doi.org/10.1038/s41591-021-01418-2
https://doi.org/10.1038/s41591-021-01418-2
https://doi.org/10.1172/JCI142242
https://doi.org/10.1111/ajt.13458
https://doi.org/10.1097/SLA.0000000000005783
https://doi.org/10.1097/SLA.0000000000005783
https://www.fda.gov/vaccines-blood-biologics/lantidra
https://www.fda.gov/vaccines-blood-biologics/lantidra
https://doi.org/10.1038/s41573-021-00262-w
https://doi.org/10.1016/j.stem.2021.10.003
https://doi.org/10.1016/j.stem.2021.10.003
https://doi.org/10.1016/j.xcrm.2021.100466
https://doi.org/10.1016/j.xcrm.2021.100466
https://doi.org/10.1016/j.cell.2014.09.040
https://doi.org/10.1016/j.cell.2014.09.040
https://doi.org/10.1038/nbt.3033
https://doi.org/10.1038/nbt.3033
https://doi.org/10.15252/embj.201591058
https://doi.org/10.15252/embj.201591058
https://doi.org/10.1038/s41591-021-01645-7
https://doi.org/10.1038/s42255-022-00713-7
https://doi.org/10.1038/s42255-022-00713-7
https://www.businesswire.com/news/home/20231003786678/en/Vertex-Presents-Positive-Updated-VX-880-Results-From-Ongoing-Phase-12-Study-in-Type-1-Diabetes-at-the-European-Association-for-the-Study-of-Diabetes-59th-Annual-Meeting
https://www.businesswire.com/news/home/20231003786678/en/Vertex-Presents-Positive-Updated-VX-880-Results-From-Ongoing-Phase-12-Study-in-Type-1-Diabetes-at-the-European-Association-for-the-Study-of-Diabetes-59th-Annual-Meeting
https://www.businesswire.com/news/home/20231003786678/en/Vertex-Presents-Positive-Updated-VX-880-Results-From-Ongoing-Phase-12-Study-in-Type-1-Diabetes-at-the-European-Association-for-the-Study-of-Diabetes-59th-Annual-Meeting
https://www.businesswire.com/news/home/20231003786678/en/Vertex-Presents-Positive-Updated-VX-880-Results-From-Ongoing-Phase-12-Study-in-Type-1-Diabetes-at-the-European-Association-for-the-Study-of-Diabetes-59th-Annual-Meeting
https://doi.org/10.2337/diabetes.53.3.645
https://doi.org/10.2337/diabetes.53.3.645
https://doi.org/10.2337/db13-1592
https://doi.org/10.2337/db13-1592
https://doi.org/10.2337/dc12-0544


ll
Review
a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol.

6, 361–369. https://doi.org/10.1016/S2213-8587(18)30051-2.

261. Tobias, D.K., Merino, J., Ahmad, A., Aiken, C., Benham, J.L., Bodhini, D.,

Clark, A.L., Colclough, K., Corcoy, R., Cromer, S.J., et al. (2023). Second

international consensus report on gaps and opportunities for the clinical

translation of precision diabetes medicine. Nat. Med. 29, 2438–2457.

https://doi.org/10.1038/s41591-023-02502-5.

262. Steele, A.M., Shields, B.M., Wensley, K.J., Colclough, K., Ellard, S., and

Hattersley, A.T. (2014). Prevalence of vascular complications among pa-

tients with glucokinase mutations and prolonged, mild hyperglycemia.

JAMA 311, 279–286. https://doi.org/10.1001/jama.2013.283980.

263. Pearson, E.R., Starkey, B.J., Powell, R.J., Gribble, F.M., Clark, P.M., and

Hattersley, A.T. (2003). Genetic cause of hyperglycaemia and response

to treatment in diabetes. Lancet 362, 1275–1281. https://doi.org/10.

1016/S0140-6736(03)14571-0.

264. Shepherd, M.H., Shields, B.M., Hudson, M., Pearson, E.R., Hyde, C., El-

lard, S., Hattersley, A.T., and Patel, K.A.; UNITED study (2018). A UK

nationwide prospective study of treatment change in MODY: genetic

subtype and clinical characteristics predict optimal glycaemic control af-

ter discontinuing insulin and metformin. Diabetologia 61, 2520–2527.

https://doi.org/10.1007/s00125-018-4728-6.

265. Franks, P.W., Cefalu, W.T., Dennis, J., Florez, J.C., Mathieu, C., Morton,
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Landó, L., Bergman, B.K., Liu, B., Cui, X., and Brown, K.; SURPASS-2 In-

vestigators (2021). Tirzepatide versus Semaglutide Once Weekly in Pa-

tients with Type 2 Diabetes. N. Engl. J. Med. 385, 503–515. https://doi.

org/10.1056/NEJMoa2107519.

297. Nicholls, S.J., Bhatt, D.L., Buse, J.B., Prato, S.D., Kahn, S.E., Lincoff,

A.M., McGuire, D.K., Nauck, M.A., Nissen, S.E., Sattar, N., et al. (2024).
3820 Cell 187, July 25, 2024
Comparison of tirzepatide and dulaglutide on major adverse cardiovas-

cular events in participants with type 2 diabetes and atherosclerotic car-

diovascular disease: SURPASS-CVOT design and baseline characteris-

tics. Am. Heart J. 267, 1–11. https://doi.org/10.1016/j.ahj.2023.09.007.

298. Malhotra, A., Grunstein, R.R., Fietze, I., Weaver, T.E., Redline, S., Azar-

barzin, A., Sands, S.A., Schwab, R.J., Dunn, J.P., Chakladar, S., et al.

(2024). Tirzepatide for the Treatment of Obstructive Sleep Apnea and

Obesity. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2404881.

299. Frias, J.P., Deenadayalan, S., Erichsen, L., Knop, F.K., Lingvay, I., Mac-

ura, S., Mathieu, C., Pedersen, S.D., and Davies, M. (2023). Efficacy and

safety of co-administered once-weekly cagrilintide 2.4 mg with once-

weekly semaglutide 2.4 mg in type 2 diabetes: a multicentre, rando-

mised, double-blind, active-controlled, phase 2 trial. Lancet 402, 720–

730. https://doi.org/10.1016/S0140-6736(23)01163-7.

300. Zimmermann, T., Thomas, L., Baader-Pagler, T., Haebel, P., Simon, E.,

Reindl, W., Bajrami, B., Rist, W., Uphues, I., Drucker, D.J., et al. (2022).

BI 456906: Discovery and preclinical pharmacology of a novel GCGR/

GLP-1R dual agonist with robust anti-obesity efficacy. Mol. Metab. 66,

101633. https://doi.org/10.1016/j.molmet.2022.101633.

301. Véniant, M.M., Lu, S.C., Atangan, L., Komorowski, R., Stanislaus, S.,

Cheng, Y., Wu, B., Falsey, J.R., Hager, T., Thomas, V.A., et al. (2024).

A GIPR antagonist conjugated to GLP-1 analogues promotes weight

loss with improved metabolic parameters in preclinical and phase 1 set-

tings. Nat. Metab. 6, 290–303. https://doi.org/10.1038/s42255-023-

00966-w.

302. Rosenstock, J., Frias, J., Jastreboff, A.M., Du, Y., Lou, J., Gurbuz, S.,

Thomas, M.K., Hartman, M.L., Haupt, A., Milicevic, Z., and Coskun, T.

(2023). Retatrutide, aGIP, GLP-1 and glucagon receptor agonist, for peo-

ple with type 2 diabetes: a randomised, double-blind, placebo and

active-controlled, parallel-group, phase 2 trial conducted in the USA.

Lancet 402, 529–544. https://doi.org/10.1016/S0140-6736(23)01053-X.

303. Saxena, A.R., Frias, J.P., Brown, L.S., Gorman, D.N., Vasas, S., Tsaman-

douras, N., and Birnbaum, M.J. (2023). Efficacy and Safety of Oral Small

Molecule Glucagon-Like Peptide 1 Receptor Agonist Danuglipron for

Glycemic Control Among Patients With Type 2 Diabetes: A Randomized

Clinical Trial. JAMA Netw. Open 6, e2314493. https://doi.org/10.1001/ja-

manetworkopen.2023.14493.

304. Wharton, S., Blevins, T., Connery, L., Rosenstock, J., Raha, S., Liu, R.,

Ma, X., Mather, K.J., Haupt, A., Robins, D., et al. (2023). Daily Oral

GLP-1 Receptor Agonist Orforglipron for Adults with Obesity. N. Engl.

J. Med. 389, 877–888. https://doi.org/10.1056/NEJMoa2302392.

305. Aroda, V.R., Aberle, J., Bardtrum, L., Christiansen, E., Knop, F.K., Gab-

ery, S., Pedersen, S.D., and Buse, J.B. (2023). Efficacy and safety of

once-daily oral semaglutide 25 mg and 50 mg compared with 14 mg in

adults with type 2 diabetes (PIONEER PLUS): a multicentre, randomised,

phase 3b trial. Lancet 402, 693–704. https://doi.org/10.1016/S0140-

6736(23)01127-3.

306. Knop, F.K., Aroda, V.R., do Vale, R.D., Holst-Hansen, T., Laursen, P.N.,

Rosenstock, J., Rubino, D.M., and Garvey, W.T.; OASIS 1 Investigators

(2023). Oral semaglutide 50 mg taken once per day in adults with over-

weight or obesity (OASIS 1): a randomised, double-blind, placebo-

controlled, phase 3 trial. Lancet 402, 705–719. https://doi.org/10.1016/

S0140-6736(23)01185-6.

https://doi.org/10.1161/CIRCULATIONAHA.121.057934
https://doi.org/10.1056/NEJMoa2307563
https://doi.org/10.1056/NEJMoa2307563
https://doi.org/10.1038/s41591-023-02526-x
https://doi.org/10.1056/NEJMoa2306963
https://doi.org/10.1056/NEJMoa1811744
https://doi.org/10.1056/NEJMoa1811744
https://doi.org/10.1161/CIRCULATIONAHA.122.059150
https://doi.org/10.1161/CIRCULATIONAHA.122.059150
https://doi.org/10.1016/j.kint.2020.02.041
https://doi.org/10.1016/j.cmet.2022.05.010
https://doi.org/10.1016/j.cmet.2022.05.010
https://doi.org/10.1056/NEJMoa2025845
https://doi.org/10.1056/NEJMoa2025845
https://doi.org/10.1056/NEJMoa2403347
https://doi.org/10.1056/NEJMoa2403347
https://doi.org/10.1056/NEJMoa2107519
https://doi.org/10.1056/NEJMoa2107519
https://doi.org/10.1016/j.ahj.2023.09.007
https://doi.org/10.1056/NEJMoa2404881
https://doi.org/10.1016/S0140-6736(23)01163-7
https://doi.org/10.1016/j.molmet.2022.101633
https://doi.org/10.1038/s42255-023-00966-w
https://doi.org/10.1038/s42255-023-00966-w
https://doi.org/10.1016/S0140-6736(23)01053-X
https://doi.org/10.1001/jamanetworkopen.2023.14493
https://doi.org/10.1001/jamanetworkopen.2023.14493
https://doi.org/10.1056/NEJMoa2302392
https://doi.org/10.1016/S0140-6736(23)01127-3
https://doi.org/10.1016/S0140-6736(23)01127-3
https://doi.org/10.1016/S0140-6736(23)01185-6
https://doi.org/10.1016/S0140-6736(23)01185-6

	Diabetes mellitus—Progress and opportunities in the evolving epidemic
	Introduction
	Pathophysiology of diabetes&mdash;Current state and future perspectives
	Genetics of T2D
	Key determinants of beta cell failure and strategies to enhance beta cell function
	Pathophysiology of T1D
	CNS and neural mechanisms
	Adipose tissue dysfunction and lipid mediators of IR
	T2D and MASLD
	The primary hit—Hepatic lipid accumulation
	Hepatocyte-NPC interactions drive MASH pathogenesis
	Role of hyperinsulinemia and non-hormonal factors in co-incident T2D/MASLD
	Spatial determinants of MASH
	Fibrosis regression pathways
	Bi-directional hepatocyte-NPC crosstalk
	Genetic adaptation to lipid overload
	Relationship with CVD


	Social drivers of health: Environments, populations, and molecular mechanisms
	Food and nutrition insecurity
	Air pollution
	DOHaD and SDoH


	Mechanisms of diabetes complications
	Diabetes and CVD
	Atherosclerosis
	Heart failure
	Impaired angiogenesis

	DKD
	Renal vascular dysfunction and DKD
	Glomerular and tubule epithelial cells in DKD
	Genetics, epigenetics, and metabolomics


	Advances in diagnosis and treatment of diabetes and its complications
	Advances in prevention and therapies for T1D
	Precision tools for diabetes subclassifications and implications for diverse populations
	Precision medicine and health equity
	Impact of population diversity

	Recent therapeutic advances in T2D

	Concluding remarks
	Acknowledgments
	Declaration of interests
	Declaration of generative AI and AI-assisted technologies in the writing process
	References


